Improvement of forecasting and classification in smart metering systems using a neural compute stick

Juan C. Olivares-Rojas, E. Reyes-Archundia, J. Gutiérrez-Gnecchi, Ismael Molina-Moreno, J. G. González-Serna
{"title":"Improvement of forecasting and classification in smart metering systems using a neural compute stick","authors":"Juan C. Olivares-Rojas, E. Reyes-Archundia, J. Gutiérrez-Gnecchi, Ismael Molina-Moreno, J. G. González-Serna","doi":"10.1109/ROPEC50909.2020.9258745","DOIUrl":null,"url":null,"abstract":"Analyzing data on smart meters is a trend increasingly used by utility companies as it allows a better understanding of data directly from the source of origin. New distributed computing architectures like edge computing have given advance to improve data analytics. Generally, the capacity of such devices, including smart meters, is quite limited, so the use of specialized auxiliary hardware has begun to be used in these devices. The present work shows the results of using a neural stick compute for forecasting and data classification processes within smart metering systems. The results show that the processing times can be remarkably improved with the use of stick computers having a suitable model for artificial neural networks.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing data on smart meters is a trend increasingly used by utility companies as it allows a better understanding of data directly from the source of origin. New distributed computing architectures like edge computing have given advance to improve data analytics. Generally, the capacity of such devices, including smart meters, is quite limited, so the use of specialized auxiliary hardware has begun to be used in these devices. The present work shows the results of using a neural stick compute for forecasting and data classification processes within smart metering systems. The results show that the processing times can be remarkably improved with the use of stick computers having a suitable model for artificial neural networks.
利用神经计算棒改进智能计量系统的预测和分类
分析智能电表上的数据是公用事业公司越来越多地使用的一种趋势,因为它可以更好地理解直接来自来源的数据。新的分布式计算架构,如边缘计算,已经在改进数据分析方面取得了进展。一般来说,包括智能电表在内的这类设备的容量是相当有限的,因此在这些设备中已经开始使用专门的辅助硬件。目前的工作显示了在智能计量系统中使用神经棒计算预测和数据分类过程的结果。结果表明,使用具有合适的人工神经网络模型的棒式计算机可以显著提高处理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信