Monocular RGB Hand Pose Inference from Unsupervised Refinable Nets

E. Dibra, Silvan Melchior, A. Balkis, Thomas Wolf, C. Öztireli, M. Gross
{"title":"Monocular RGB Hand Pose Inference from Unsupervised Refinable Nets","authors":"E. Dibra, Silvan Melchior, A. Balkis, Thomas Wolf, C. Öztireli, M. Gross","doi":"10.1109/CVPRW.2018.00155","DOIUrl":null,"url":null,"abstract":"3D hand pose inference from monocular RGB data is a challenging problem. CNN-based approaches have shown great promise in tackling this problem. However, such approaches are data-hungry, and obtaining real labeled training hand data is very hard. To overcome this, in this work, we propose a new, large, realistically rendered hand dataset and a neural network trained on it, with the ability to refine itself unsupervised on real unlabeled RGB images, given corresponding depth images. We benchmark and validate our method on existing and captured datasets, demonstrating that we strongly compare to or outperform state-of-the-art methods for various tasks ranging from 3D pose estimation to hand gesture recognition.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

3D hand pose inference from monocular RGB data is a challenging problem. CNN-based approaches have shown great promise in tackling this problem. However, such approaches are data-hungry, and obtaining real labeled training hand data is very hard. To overcome this, in this work, we propose a new, large, realistically rendered hand dataset and a neural network trained on it, with the ability to refine itself unsupervised on real unlabeled RGB images, given corresponding depth images. We benchmark and validate our method on existing and captured datasets, demonstrating that we strongly compare to or outperform state-of-the-art methods for various tasks ranging from 3D pose estimation to hand gesture recognition.
基于无监督精细网络的单目RGB手部姿态推断
从单目RGB数据推断三维手姿是一个具有挑战性的问题。基于cnn的方法在解决这个问题上显示出了很大的希望。然而,这种方法需要大量的数据,并且很难获得真正的标记训练手数据。为了克服这个问题,在这项工作中,我们提出了一个新的、大型的、真实渲染的手部数据集和一个在其上训练的神经网络,该神经网络能够在给定相应深度的真实未标记RGB图像上进行无监督的自我改进。我们在现有和捕获的数据集上对我们的方法进行基准测试和验证,证明我们在从3D姿态估计到手势识别的各种任务中强烈地比较或优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信