Load consumption prediction utilizing historical weather data and climate change projections

Po-Chen Chen, M. Kezunovic
{"title":"Load consumption prediction utilizing historical weather data and climate change projections","authors":"Po-Chen Chen, M. Kezunovic","doi":"10.1109/ISAP.2017.8071415","DOIUrl":null,"url":null,"abstract":"The weather impact a major factor in operation of power systems. From the long-term planning perspective, it is not enough to predict whether impacts caused by short-term changes in the atmosphere but one also needs to account for the impact of long-term climate change as well. This paper demonstrates how to utilize the historical weather data and climate change projections in a large (macro) geographical area to predict future load patterns in a relatively small (micro) geographical area. The results show that the impact of temperature rising can have either positive or negative impact on the load, and the deviations may be large depending on the projected climate change data.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The weather impact a major factor in operation of power systems. From the long-term planning perspective, it is not enough to predict whether impacts caused by short-term changes in the atmosphere but one also needs to account for the impact of long-term climate change as well. This paper demonstrates how to utilize the historical weather data and climate change projections in a large (macro) geographical area to predict future load patterns in a relatively small (micro) geographical area. The results show that the impact of temperature rising can have either positive or negative impact on the load, and the deviations may be large depending on the projected climate change data.
利用历史天气数据和气候变化预测进行负荷消耗预测
天气是影响电力系统运行的一个重要因素。从长期规划的角度来看,仅仅预测大气中的短期变化是否会造成影响是不够的,还需要考虑到长期气候变化的影响。本文演示了如何利用大(宏观)地理区域的历史天气数据和气候变化预测来预测相对较小(微观)地理区域的未来负荷模式。结果表明,气温上升对负荷的影响既有正影响,也有负影响,且随气候变化预估数据的变化偏差可能较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信