Improved bisection eigenvalue method for band symmetric Toeplitz matrices

Y. Eidelman, I. Haimovici
{"title":"Improved bisection eigenvalue method for band symmetric Toeplitz matrices","authors":"Y. Eidelman, I. Haimovici","doi":"10.1553/etna_vol58s316","DOIUrl":null,"url":null,"abstract":". We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasisep- arable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix T q with bandwidth q admits the representation T q = A q + H q , where the eigendata of A q are obtained explicitly and the matrix H q has nonzero entries only in two diagonal blocks of size ( q − 1) × ( q − 1) . Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix T q and the known eigenvalues of the matrix A q . This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. We apply a general bisection eigenvalue algorithm, developed for Hermitian matrices with quasisep- arable representations, to the particular case of real band symmetric Toeplitz matrices. We show that every band symmetric Toeplitz matrix T q with bandwidth q admits the representation T q = A q + H q , where the eigendata of A q are obtained explicitly and the matrix H q has nonzero entries only in two diagonal blocks of size ( q − 1) × ( q − 1) . Based on this representation, one obtains an interlacing property of the eigenvalues of the matrix T q and the known eigenvalues of the matrix A q . This allows us to essentially improve the performance of the bisection eigenvalue algorithm. We also present an algorithm to compute the corresponding eigenvectors.
带对称Toeplitz矩阵的改进对分特征值法
。我们将拟可采表示的厄密矩阵的一般二分特征值算法应用于实带对称托普利兹矩阵的特殊情况。我们证明了带宽为q的每一个带对称Toeplitz矩阵tq可以表示为tq = aq + hq,其中aq的特征数据是显式地得到的,并且矩阵hq只在两个大小为(q−1)× (q−1)的对角线块中有非零项。基于这种表示,我们得到了矩阵tq的特征值与矩阵aq的已知特征值的交错性质。这使我们能够从本质上改进二分特征值算法的性能。我们还提出了一种计算相应特征向量的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信