GeoMix: scalable geoscientific array data management

Yaoliang Chen, Xiaomin Xu, Pohan Li, Siyuan Lu, Sheng Huang, W. Lu, Kevin Brown
{"title":"GeoMix: scalable geoscientific array data management","authors":"Yaoliang Chen, Xiaomin Xu, Pohan Li, Siyuan Lu, Sheng Huang, W. Lu, Kevin Brown","doi":"10.1145/2541596.2541597","DOIUrl":null,"url":null,"abstract":"Geoscientific array data, such as satellite imagery, geoscientific model, and weather prediction model data, are a significant subset of scientific array data that use geolocation information as index. The sharp growth in the availability of such data demands new data management infrastructures. The traditional relational DBs has problems managing such spatial-array-oriented data due to the limitations of relational algebra(RA) and SQL. In this paper, we investigate this problem and summarize the basic requirements for big geoscientific array data management. Following the requirements, we propose a novel data model in which the geoscientific arrays are modeled as spatial array objects supported by a two-level spatial index. Based on the data model, we implement GeoMix, a geoscientific database system inside IBM Informix, aiming to provide middleware-level support for data management on geoscientific array data. It provides users with a SQL insert/select interface as well as a set of APIs enabling direct data access by native arrays. Last, we show, by a series of experimentations, the power of GeoMix to provide middleware-level support for complex analytics on real satellite imagery and model data.","PeriodicalId":236953,"journal":{"name":"Middleware Industry '13","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Middleware Industry '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541596.2541597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Geoscientific array data, such as satellite imagery, geoscientific model, and weather prediction model data, are a significant subset of scientific array data that use geolocation information as index. The sharp growth in the availability of such data demands new data management infrastructures. The traditional relational DBs has problems managing such spatial-array-oriented data due to the limitations of relational algebra(RA) and SQL. In this paper, we investigate this problem and summarize the basic requirements for big geoscientific array data management. Following the requirements, we propose a novel data model in which the geoscientific arrays are modeled as spatial array objects supported by a two-level spatial index. Based on the data model, we implement GeoMix, a geoscientific database system inside IBM Informix, aiming to provide middleware-level support for data management on geoscientific array data. It provides users with a SQL insert/select interface as well as a set of APIs enabling direct data access by native arrays. Last, we show, by a series of experimentations, the power of GeoMix to provide middleware-level support for complex analytics on real satellite imagery and model data.
GeoMix:可扩展的地球科学阵列数据管理
地球科学阵列数据,如卫星图像、地球科学模型和天气预报模型数据,是使用地理位置信息作为索引的科学阵列数据的重要子集。这些数据可用性的急剧增长需要新的数据管理基础设施。由于关系代数(RA)和SQL的限制,传统的关系数据库在管理这种面向空间数组的数据方面存在问题。本文对这一问题进行了研究,总结了大阵列数据管理的基本要求。根据这些要求,我们提出了一种新的数据模型,其中地球科学阵列被建模为由两级空间索引支持的空间阵列对象。基于数据模型,我们实现了GeoMix,这是IBM Informix中的一个地球科学数据库系统,旨在为地球科学阵列数据的数据管理提供中间件级别的支持。它为用户提供了SQL插入/选择接口以及一组api,这些api支持通过本地数组直接访问数据。最后,通过一系列实验,我们展示了GeoMix为真实卫星图像和模型数据的复杂分析提供中间件支持的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信