Arne Schneck, S. Kalle, R. Pryss, W. Schlee, T. Probst, B. Langguth, M. Landgrebe, M. Reichert, M. Spiliopoulou
{"title":"Studying the Potential of Multi-target Classification to Characterize Combinations of Classes with Skewed Distribution","authors":"Arne Schneck, S. Kalle, R. Pryss, W. Schlee, T. Probst, B. Langguth, M. Landgrebe, M. Reichert, M. Spiliopoulou","doi":"10.1109/CBMS.2017.136","DOIUrl":null,"url":null,"abstract":"The identification of subpopulations with particular characteristics with respect to a disease is important for personalized diagnostics and therapy design. For some diseases, the outcome is described by more than one target variable. An example is tinnitus: the perceived loudness of the phantom signal and the level of distress caused by it are both relevant targets for diagnosis and therapy. In this work, we study the potential of multi-target classification for the identification of those screening variables, which separate best among the different subpopulations of patients, paying particular attention to subpopulations with discordant value combinations of loudness and distress. We analyse the screening data of 1344 tinnitus patients from the University Hospital Regensburg, including questions from 7 questionnaires, and report on the performance of our workflow in target separation and in ranking the questionnaires variables on their discriminative power.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The identification of subpopulations with particular characteristics with respect to a disease is important for personalized diagnostics and therapy design. For some diseases, the outcome is described by more than one target variable. An example is tinnitus: the perceived loudness of the phantom signal and the level of distress caused by it are both relevant targets for diagnosis and therapy. In this work, we study the potential of multi-target classification for the identification of those screening variables, which separate best among the different subpopulations of patients, paying particular attention to subpopulations with discordant value combinations of loudness and distress. We analyse the screening data of 1344 tinnitus patients from the University Hospital Regensburg, including questions from 7 questionnaires, and report on the performance of our workflow in target separation and in ranking the questionnaires variables on their discriminative power.