Community pooling: LDA topic modeling in Twitter

F. Albanese, E. Feuerstein
{"title":"Community pooling: LDA topic modeling in Twitter","authors":"F. Albanese, E. Feuerstein","doi":"10.52591/2021072417","DOIUrl":null,"url":null,"abstract":"Social networks play a fundamental role in propagation of information and news. Characterizing the content of the messages becomes vital for tasks like fake news detection or personalized message recommendation. However, Twitter posts are short and often less coherent than other text documents, which makes it challenging to apply text mining algorithms efficiently. We propose a new pooling scheme for topic modeling in Twitter, which groups tweets whose authors belong to the same community on the retweet network into a single document. Our findings contribute to an improved methodology for identifying the latent topics in a Twitter dataset, without modifying the basic machinery of a topic decomposition model. In particular, we used Latent Dirichlet Allocation (LDA) and empirically showed that this novel method achieves better results than previous pooling methods in terms of cluster quality, document retrieval tasks, supervised machine learning classification and overall run time.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/2021072417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social networks play a fundamental role in propagation of information and news. Characterizing the content of the messages becomes vital for tasks like fake news detection or personalized message recommendation. However, Twitter posts are short and often less coherent than other text documents, which makes it challenging to apply text mining algorithms efficiently. We propose a new pooling scheme for topic modeling in Twitter, which groups tweets whose authors belong to the same community on the retweet network into a single document. Our findings contribute to an improved methodology for identifying the latent topics in a Twitter dataset, without modifying the basic machinery of a topic decomposition model. In particular, we used Latent Dirichlet Allocation (LDA) and empirically showed that this novel method achieves better results than previous pooling methods in terms of cluster quality, document retrieval tasks, supervised machine learning classification and overall run time.
社区池:Twitter中的LDA主题建模
社交网络在信息和新闻的传播中起着基础性的作用。对于假新闻检测或个性化消息推荐等任务来说,描述消息内容的特征变得至关重要。然而,Twitter的帖子很短,而且通常不如其他文本文档连贯,这使得有效地应用文本挖掘算法具有挑战性。我们提出了一种新的Twitter主题建模池方案,该方案将转发网络上属于同一社区的推文分组为单个文档。我们的发现有助于改进在Twitter数据集中识别潜在主题的方法,而无需修改主题分解模型的基本机制。特别是,我们使用了潜狄利克雷分配(Latent Dirichlet Allocation, LDA),并通过经验证明,这种新方法在聚类质量、文档检索任务、监督机器学习分类和总体运行时间方面比以前的池化方法取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信