Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence

I. Argyros, S. George
{"title":"Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence","authors":"I. Argyros, S. George","doi":"10.33993/jnaat501-1247","DOIUrl":null,"url":null,"abstract":"We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used. \nIn this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat501-1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used. In this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.
具有最优四阶收敛的potra - ptak型球收敛方法
提出了一种具有最优四阶收敛的局部收敛分析potra - ptak型逼近非线性方程解的方法。在早期的研究中,如[1],[5]-[28]使用了四阶导数的假设。在本文中,我们只使用了一阶导数以下的假设,从而在较弱的假设下推广了这些方法的适用性。并给出了该方法的收敛半径和距离上的可计算误差范围。文中还给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信