Keyframe extraction for human motion capture data based on affinity propagation

Bin Sun, Dehui Kong, Shaofan Wang, Jinghua Li
{"title":"Keyframe extraction for human motion capture data based on affinity propagation","authors":"Bin Sun, Dehui Kong, Shaofan Wang, Jinghua Li","doi":"10.1109/IEMCON.2018.8614862","DOIUrl":null,"url":null,"abstract":"Keyframe extraction is important for video retrieval. In order to realize frequency adaptive human motion sequence resampling and achieve high quality keyframe, we propose a new keyframe extraction method for human motion sequence. First, we define the inter-frame similarity metric based on the features of human body parts. Then, the keyframe extraction is realized by the affine propagation clustering algorithm. The proposed method starts from the information distribution of the video itself, adaptively searches for the optimal keyframe of the video, and the operation speed is fast. Finally, the evaluation of the sequence reconstruction based on keyframe is verified. A comparative experiment conducted on the CMU database verified the efficiency of our method.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8614862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Keyframe extraction is important for video retrieval. In order to realize frequency adaptive human motion sequence resampling and achieve high quality keyframe, we propose a new keyframe extraction method for human motion sequence. First, we define the inter-frame similarity metric based on the features of human body parts. Then, the keyframe extraction is realized by the affine propagation clustering algorithm. The proposed method starts from the information distribution of the video itself, adaptively searches for the optimal keyframe of the video, and the operation speed is fast. Finally, the evaluation of the sequence reconstruction based on keyframe is verified. A comparative experiment conducted on the CMU database verified the efficiency of our method.
基于亲和传播的人体动作捕捉数据关键帧提取
关键帧提取是视频检索的重要内容。为了实现频率自适应人体运动序列重采样,获得高质量的关键帧,提出了一种新的人体运动序列关键帧提取方法。首先,基于人体部位特征定义帧间相似度度量;然后,利用仿射传播聚类算法实现关键帧的提取。该方法从视频本身的信息分布出发,自适应搜索视频的最优关键帧,运算速度快。最后,验证了基于关键帧的序列重建评价。在CMU数据库上进行的对比实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信