Unique recovery from edge information

Benjamin Allen, M. Kon
{"title":"Unique recovery from edge information","authors":"Benjamin Allen, M. Kon","doi":"10.1109/SAMPTA.2015.7148903","DOIUrl":null,"url":null,"abstract":"We study the inverse problem of recovering a function f from the nodes (zeroes) of its wavelet transform. The solution also provides an answer to a generalization of the Marr conjecture in wavelet and mathematical vision theory, regarding whether an image is uniquely determined by its edge information. The question has also other forms, including whether nodes of heat and related equation solutions determine their initial conditions. The general Marr problem reduces in a natural way to the moment problem for reconstructing f, using the moment basis on Rd (Taylor monomials xα), and its dual basis (derivatives δ(α) of of the Dirac delta distribution), expanding the wavelet transform in moments of f. If f has exponential decay and the wavelet's derivatives satisfy generic positions for their zeroes, then f can be uniquely recovered. We show this is the strongest statement of its type. For the original Gaussian wavelet unique recovery reduces to genericity of zeroes of so-called Laplace-Hermite polynomials, which is proved in one dimension.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the inverse problem of recovering a function f from the nodes (zeroes) of its wavelet transform. The solution also provides an answer to a generalization of the Marr conjecture in wavelet and mathematical vision theory, regarding whether an image is uniquely determined by its edge information. The question has also other forms, including whether nodes of heat and related equation solutions determine their initial conditions. The general Marr problem reduces in a natural way to the moment problem for reconstructing f, using the moment basis on Rd (Taylor monomials xα), and its dual basis (derivatives δ(α) of of the Dirac delta distribution), expanding the wavelet transform in moments of f. If f has exponential decay and the wavelet's derivatives satisfy generic positions for their zeroes, then f can be uniquely recovered. We show this is the strongest statement of its type. For the original Gaussian wavelet unique recovery reduces to genericity of zeroes of so-called Laplace-Hermite polynomials, which is proved in one dimension.
唯一的恢复边缘信息
研究了从函数f的小波变换的节点(零)中恢复函数f的反问题。该解决方案还为小波和数学视觉理论中Marr猜想的推广提供了答案,该猜想是关于图像是否由其边缘信息唯一决定的。这个问题还有其他形式,包括热节点和相关方程的解是否决定了它们的初始条件。一般Marr问题以一种自然的方式简化为重构f的矩问题,使用Rd(泰勒单项式xα)上的矩基及其对偶基(狄拉克δ分布的导数δ(α))展开f的矩中的小波变换。如果f具有指数衰减并且小波导数满足其零点的一般位置,则f可以唯一地恢复。我们证明这是同类声明中最强有力的。对于原始高斯小波,唯一恢复归结为拉普拉斯-埃尔米特多项式的零的一般性,这在一维上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信