Acoustic classification using linear predictive coding for wildlife detection systems

L. Grama, Elena Roxana Buhus, C. Rusu
{"title":"Acoustic classification using linear predictive coding for wildlife detection systems","authors":"L. Grama, Elena Roxana Buhus, C. Rusu","doi":"10.1109/ISSCS.2017.8034944","DOIUrl":null,"url":null,"abstract":"In this work we compare different classification algorithms applied on different number of features (linear predictive coding coefficients) in order to detect audio signals from wildlife areas. The final goal is to find the appropriate number of linear predictive coding coefficients to provide the desired accuracy for a certain framework. The experimental results prove that the best classifier is Logistic Model Trees regardless the number of features, having a constant classification accuracy greater than 95%. In the case of a reduced number of features, both Random Forest and Lazy IBk have good results; the classification accuracy is greater than 98%.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work we compare different classification algorithms applied on different number of features (linear predictive coding coefficients) in order to detect audio signals from wildlife areas. The final goal is to find the appropriate number of linear predictive coding coefficients to provide the desired accuracy for a certain framework. The experimental results prove that the best classifier is Logistic Model Trees regardless the number of features, having a constant classification accuracy greater than 95%. In the case of a reduced number of features, both Random Forest and Lazy IBk have good results; the classification accuracy is greater than 98%.
基于线性预测编码的野生动物探测系统声学分类
在这项工作中,我们比较了应用于不同数量的特征(线性预测编码系数)的不同分类算法,以检测来自野生动物区域的音频信号。最终目标是找到适当数量的线性预测编码系数,为特定框架提供所需的精度。实验结果证明,无论特征个数多少,最佳分类器都是Logistic模型树(Logistic Model Trees),分类准确率恒定在95%以上。在特征数量减少的情况下,随机森林和懒惰IBk都有很好的结果;分类准确率大于98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信