Spectral decomposition for a QS based delay model with Erlang and hyperexponential distributions

V. Tarasov
{"title":"Spectral decomposition for a QS based delay model with Erlang and hyperexponential distributions","authors":"V. Tarasov","doi":"10.18469/1810-3189.2022.25.3.24-28","DOIUrl":null,"url":null,"abstract":"This article is devoted to the study and obtaining a closed-form solution for the average delay of claims in a queue for a QS formed by two flows with Erlang and hyperexponential distributions of the second order for time intervals. As is known, the Erlang distribution ensures the coefficient of variation of the arrival intervals is less than one, and the hyperexponential distribution is greater than one. It is also known that the main characteristic of the QS, the average delay, is related to these coefficients of variations by a quadratic dependence. Studies of G/G/1 systems in queuing theory are topical due to the fact that they are used in modeling data transmission systems for teletraffic analysis. To solve the problem, the method of spectral decomposition of the solution of the Lindley integral equation was used. The spectral decomposition for the system under consideration made it possible to obtain a closed-form solution for the average delay of requests in the queue. For the practical application of the results obtained, the method of moments is used.","PeriodicalId":129469,"journal":{"name":"Physics of Wave Processes and Radio Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Processes and Radio Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/1810-3189.2022.25.3.24-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to the study and obtaining a closed-form solution for the average delay of claims in a queue for a QS formed by two flows with Erlang and hyperexponential distributions of the second order for time intervals. As is known, the Erlang distribution ensures the coefficient of variation of the arrival intervals is less than one, and the hyperexponential distribution is greater than one. It is also known that the main characteristic of the QS, the average delay, is related to these coefficients of variations by a quadratic dependence. Studies of G/G/1 systems in queuing theory are topical due to the fact that they are used in modeling data transmission systems for teletraffic analysis. To solve the problem, the method of spectral decomposition of the solution of the Lindley integral equation was used. The spectral decomposition for the system under consideration made it possible to obtain a closed-form solution for the average delay of requests in the queue. For the practical application of the results obtained, the method of moments is used.
具有Erlang和超指数分布的QS延迟模型的谱分解
本文研究并得到了由两个具有Erlang和超指数分布的二阶流构成的QS队列中索赔平均延迟的闭型解。众所周知,Erlang分布保证了到达区间的变异系数小于1,而超指数分布则大于1。我们还知道,QS的主要特征,即平均延迟,与这些变化系数呈二次相关关系。排队论中G/G/1系统的研究是一个热门话题,因为它们被用于为远程流量分析建模数据传输系统。为了解决这一问题,采用了林德利积分方程解的谱分解方法。对所考虑的系统进行频谱分解,可以获得队列中请求的平均延迟的封闭形式解。对于所得结果的实际应用,采用了矩量法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信