Inference, Simulation and Application of a Latent Trawl Model for Extreme Values

Valentin Courgeau, Almut E. D. Veraart
{"title":"Inference, Simulation and Application of a Latent Trawl Model for Extreme Values","authors":"Valentin Courgeau, Almut E. D. Veraart","doi":"10.2139/ssrn.3296257","DOIUrl":null,"url":null,"abstract":"We extend the study of a parametric latent model for extreme values from Noven et al. (2018) which captures serial dependence in the exceedances above a threshold using so-called trawl processes (Barndorff-Nielsen (2011)) - a family of stationary and infinitely divisible random processes. In this regard, this article comprises a new approximation of the autocorrelation function at small lags. Applying this result, we unveil a unprecedented way to estimate key trawl parameters along with their convergence in probability to the true value under reasonable technical assumptions. We also investigate an identifiability issue from both theoretical arguments and numerical examples with a focus on a simulation study. This leads to apply this model on solar energy intake data (ARNE Mesonet station, Oklahoma, USA) with negative shape parameter which corroborates the flexibility and goodness-of-fit originally tested in Noven et al. (2018).","PeriodicalId":207061,"journal":{"name":"EngRN: Dynamical System (Topic)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Dynamical System (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3296257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the study of a parametric latent model for extreme values from Noven et al. (2018) which captures serial dependence in the exceedances above a threshold using so-called trawl processes (Barndorff-Nielsen (2011)) - a family of stationary and infinitely divisible random processes. In this regard, this article comprises a new approximation of the autocorrelation function at small lags. Applying this result, we unveil a unprecedented way to estimate key trawl parameters along with their convergence in probability to the true value under reasonable technical assumptions. We also investigate an identifiability issue from both theoretical arguments and numerical examples with a focus on a simulation study. This leads to apply this model on solar energy intake data (ARNE Mesonet station, Oklahoma, USA) with negative shape parameter which corroborates the flexibility and goodness-of-fit originally tested in Noven et al. (2018).
极值潜在拖网模型的推理、模拟与应用
我们扩展了Noven等人(2018)对极值的参数潜在模型的研究,该模型使用所谓的拖网过程(Barndorff-Nielsen(2011))捕获超过阈值的连续依赖性,拖网过程是一组平稳且无限可分的随机过程。在这方面,本文包含了一个新的自相关函数在小滞后的近似。应用这一结果,我们揭示了一种前所未有的方法来估计关键拖网参数及其在合理的技术假设下收敛于真值的概率。我们还从理论论证和数值例子中研究了一个可识别性问题,重点是模拟研究。这导致将该模型应用于具有负形状参数的太阳能摄入数据(美国俄克拉荷马州的ARNE Mesonet站),这证实了Noven等人(2018)最初测试的灵活性和拟合优度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信