Uwe Gruenefeld, Sebastian Weiß, Andreas Löcken, Isabella Virgilio, A. Kun, Susanne CJ Boll
{"title":"VRoad","authors":"Uwe Gruenefeld, Sebastian Weiß, Andreas Löcken, Isabella Virgilio, A. Kun, Susanne CJ Boll","doi":"10.1145/3349263.3351511","DOIUrl":null,"url":null,"abstract":"As a third party to both automated and non-automated vehicles, pedestrians are among the most vulnerable participants in traffic. Currently, there is no way for them to communicate their intentions to an automated vehicle (AV). In this work, we explore the interactions between pedestrians and AVs at unmarked crossings. We propose a virtual reality testbed, in which we conducted a pilot study to compare three conditions: crossing a street before a car that (1) does not give information, (2) displays its locomotion, or (3) displays its locomotion and reacts to pedestrians' gestures. Our results show that gestures introduce a new point of failure, which can increase pedestrians' insecurity. However, communicating the vehicle's locomotion supports pedestrians, helping them to make safer decisions.","PeriodicalId":237150,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349263.3351511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
As a third party to both automated and non-automated vehicles, pedestrians are among the most vulnerable participants in traffic. Currently, there is no way for them to communicate their intentions to an automated vehicle (AV). In this work, we explore the interactions between pedestrians and AVs at unmarked crossings. We propose a virtual reality testbed, in which we conducted a pilot study to compare three conditions: crossing a street before a car that (1) does not give information, (2) displays its locomotion, or (3) displays its locomotion and reacts to pedestrians' gestures. Our results show that gestures introduce a new point of failure, which can increase pedestrians' insecurity. However, communicating the vehicle's locomotion supports pedestrians, helping them to make safer decisions.