Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway

Otto Kandler , Karl O. Stetter
{"title":"Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway","authors":"Otto Kandler ,&nbsp;Karl O. Stetter","doi":"10.1016/S0721-9571(81)80034-8","DOIUrl":null,"url":null,"abstract":"<div><p>The labeling kinetics of early products of heterotrophic and autotrophic <sup>14</sup>CO<sub>2</sub> fixation in <em>Sulfolobus brierleyi</em> have been studied. Glutamic acid and glutamine were the dominating labeled compounds after 30 sec and 10 min of heterotrophic <sup>14</sup>CO<sub>2</sub> fixation, with only small portions of <sup>14</sup>C detectable in aspartic acid, alanine and an unknown compound Z. Malic acid, citric acid, glutamic acid, aspartic acid and an unknown compound X were the compounds most rapidly labeled during short time autotrophic <sup>14</sup>CO<sub>2</sub> fixation.</p><p>It is concluded that the heterotrophic CO<sub>2</sub> fixation of <em>S. brierleyi</em> is based primarily on an exchange between the <em>α</em>-carboxyl group of <em>α</em>-keto-glutaric acid and <sup>14</sup>CO<sub>2</sub>, whereas the autotrophic <sup>14</sup>CO<sub>2</sub> fixation of this organism leads to a true net assimilation of carbon via a reductive carboxylic acid pathway with malic acid, citric acid, aspartic acid, glutamic acid and the unknown compound X as early products. The participation of pyruvate is doubtful, since alanine is only slowly labeled. The evolutionary implications of these findings are discussed.</p><p>It is suggested that a reductive carboxylic acid pathway, of which various modifications exist at present in <em>Chlorobium</em>, an early unique branch of the eubacteria and in both groups of autotrophic archaebacteria (methanogenic bacteria and <em>Sulfolobus</em>) may be a common heritage of all organisms, whereas the Calvin-Benson cycle was “invented” at an early evolutionary stage of the gram-negative eubacteria.</p></div>","PeriodicalId":101290,"journal":{"name":"Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ?kologische Mikrobiologie","volume":"2 2","pages":"Pages 111-121"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0721-9571(81)80034-8","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ?kologische Mikrobiologie","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0721957181800348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The labeling kinetics of early products of heterotrophic and autotrophic 14CO2 fixation in Sulfolobus brierleyi have been studied. Glutamic acid and glutamine were the dominating labeled compounds after 30 sec and 10 min of heterotrophic 14CO2 fixation, with only small portions of 14C detectable in aspartic acid, alanine and an unknown compound Z. Malic acid, citric acid, glutamic acid, aspartic acid and an unknown compound X were the compounds most rapidly labeled during short time autotrophic 14CO2 fixation.

It is concluded that the heterotrophic CO2 fixation of S. brierleyi is based primarily on an exchange between the α-carboxyl group of α-keto-glutaric acid and 14CO2, whereas the autotrophic 14CO2 fixation of this organism leads to a true net assimilation of carbon via a reductive carboxylic acid pathway with malic acid, citric acid, aspartic acid, glutamic acid and the unknown compound X as early products. The participation of pyruvate is doubtful, since alanine is only slowly labeled. The evolutionary implications of these findings are discussed.

It is suggested that a reductive carboxylic acid pathway, of which various modifications exist at present in Chlorobium, an early unique branch of the eubacteria and in both groups of autotrophic archaebacteria (methanogenic bacteria and Sulfolobus) may be a common heritage of all organisms, whereas the Calvin-Benson cycle was “invented” at an early evolutionary stage of the gram-negative eubacteria.

蒲公英通过还原羧酸途径自养CO2同化的证据
对异养和自养14CO2固定早期产物的标记动力学进行了研究。在异养14CO2固定30秒和10分钟后,谷氨酸和谷氨酰胺是主要的标记化合物,在天冬氨酸、丙氨酸和未知化合物z中仅检测到少量的14C。苹果酸、柠檬酸、谷氨酸、天冬氨酸和未知化合物X是短时间自养14CO2固定过程中标记最快的化合物。综上所述,brierleyi的异养CO2固定主要基于α-酮-戊二酸α-羧基与14CO2之间的交换,而该生物的自养14CO2固定则通过还原羧酸途径以苹果酸、柠檬酸、天冬氨酸、谷氨酸和未知化合物X作为早期产物,导致碳的真正净同化。丙酮酸的参与是值得怀疑的,因为丙氨酸只是缓慢地标记。讨论了这些发现的进化意义。这表明,一个还原羧酸途径,目前存在于绿菌,一个早期独特的分支和两组自养古细菌(产甲烷菌和磺胺菌)可能是所有生物的共同遗产,而卡尔文-本森循环是在革兰氏阴性真细菌的早期进化阶段“发明”的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信