Ping Zhang, Linjie Chen, Shaoxiang Sheng, Wenqi Hu, Huiru Liu, C. Ma, Zijia Liu, B. Feng, Peng Cheng, Yi-Qi Zhang, Lan Chen, Jin Zhao, Kehui Wu
{"title":"Melamine self-assembly and dehydrogenation on Ag(111) studied by tip-enhanced Raman spectroscopy.","authors":"Ping Zhang, Linjie Chen, Shaoxiang Sheng, Wenqi Hu, Huiru Liu, C. Ma, Zijia Liu, B. Feng, Peng Cheng, Yi-Qi Zhang, Lan Chen, Jin Zhao, Kehui Wu","doi":"10.1063/5.0091353","DOIUrl":null,"url":null,"abstract":"The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the β-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0091353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the β-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.