Key-Locked Rank One Editing for Text-to-Image Personalization

Yoad Tewel, Rinon Gal, Gal Chechik, Y. Atzmon
{"title":"Key-Locked Rank One Editing for Text-to-Image Personalization","authors":"Yoad Tewel, Rinon Gal, Gal Chechik, Y. Atzmon","doi":"10.1145/3588432.3591506","DOIUrl":null,"url":null,"abstract":"Text-to-image models (T2I) offer a new level of flexibility by allowing users to guide the creative process through natural language. However, personalizing these models to align with user-provided visual concepts remains a challenging problem. The task of T2I personalization poses multiple hard challenges, such as maintaining high visual fidelity while allowing creative control, combining multiple personalized concepts in a single image, and keeping a small model size. We present Perfusion, a T2I personalization method that addresses these challenges using dynamic rank-1 updates to the underlying T2I model. Perfusion avoids overfitting by introducing a new mechanism that “locks” new concepts’ cross-attention Keys to their superordinate category. Additionally, we develop a gated rank-1 approach that enables us to control the influence of a learned concept during inference time and to combine multiple concepts. This allows runtime efficient balancing of visual-fidelity and textual-alignment with a single 100KB trained model. Importantly, it can span different operating points across the Pareto front without additional training. We compare our approach to strong baselines and demonstrate its qualitative and quantitative strengths.","PeriodicalId":280036,"journal":{"name":"ACM SIGGRAPH 2023 Conference Proceedings","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588432.3591506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Text-to-image models (T2I) offer a new level of flexibility by allowing users to guide the creative process through natural language. However, personalizing these models to align with user-provided visual concepts remains a challenging problem. The task of T2I personalization poses multiple hard challenges, such as maintaining high visual fidelity while allowing creative control, combining multiple personalized concepts in a single image, and keeping a small model size. We present Perfusion, a T2I personalization method that addresses these challenges using dynamic rank-1 updates to the underlying T2I model. Perfusion avoids overfitting by introducing a new mechanism that “locks” new concepts’ cross-attention Keys to their superordinate category. Additionally, we develop a gated rank-1 approach that enables us to control the influence of a learned concept during inference time and to combine multiple concepts. This allows runtime efficient balancing of visual-fidelity and textual-alignment with a single 100KB trained model. Importantly, it can span different operating points across the Pareto front without additional training. We compare our approach to strong baselines and demonstrate its qualitative and quantitative strengths.
锁键一级编辑文本到图像的个性化
文本到图像模型(tt2i)提供了一个新的灵活性水平,允许用户通过自然语言指导创作过程。然而,个性化这些模型以与用户提供的视觉概念保持一致仍然是一个具有挑战性的问题。T2I个性化的任务面临着多重艰巨的挑战,例如在允许创造性控制的同时保持高视觉保真度,在单个图像中结合多个个性化概念,以及保持小模型尺寸。我们提出了灌注,一种T2I个性化方法,通过对T2I基础模型进行动态1级更新来解决这些挑战。灌注通过引入一种新的机制来避免过度拟合,这种机制将新概念的交叉注意键“锁定”到它们的上级类别。此外,我们开发了一种门控rank-1方法,使我们能够在推理时间内控制学习概念的影响并组合多个概念。这允许运行时有效地平衡视觉保真度和文本对齐与单个100KB训练模型。重要的是,它可以跨越帕累托前线的不同操作点,而无需额外的训练。我们将我们的方法与强大的基线进行比较,并展示其定性和定量优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信