Diffraction from Arbitrarily Shaped Open Shells of Revolution: Static Case

S. Panin, P. Smith, E. Vinogradova, S. Vinogradov
{"title":"Diffraction from Arbitrarily Shaped Open Shells of Revolution: Static Case","authors":"S. Panin, P. Smith, E. Vinogradova, S. Vinogradov","doi":"10.1109/ICEAA.2007.4387389","DOIUrl":null,"url":null,"abstract":"A mathematically rigorous and numerically efficient approach is developed for solving the Laplace equation with Dirichlet boundary condition on a closed or open arbitrary shaped surface of revolution. Although important in itself, the problem also provides a first step towards the solution of the related wave scattering problem. The generalized method of analytical regularization transforms the problem to a well-conditioned infinite system of linear algebraic equations of the second kind. This provides a robust numerical solution with any desired accuracy.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mathematically rigorous and numerically efficient approach is developed for solving the Laplace equation with Dirichlet boundary condition on a closed or open arbitrary shaped surface of revolution. Although important in itself, the problem also provides a first step towards the solution of the related wave scattering problem. The generalized method of analytical regularization transforms the problem to a well-conditioned infinite system of linear algebraic equations of the second kind. This provides a robust numerical solution with any desired accuracy.
任意形状开壳旋转的衍射:静态情况
提出了一种数学上严谨、数值上有效的方法,用于求解具有Dirichlet边界条件的闭或开任意形状旋转表面上的拉普拉斯方程。虽然这个问题本身很重要,但它也为解决相关的波散射问题提供了第一步。广义解析正则化方法将该问题转化为第二类线性代数方程的良条件无穷方程组。这提供了一个强大的数值解决方案与任何所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信