A distributed control architecture for collaborative multi-robot task allocation

Janelle Blankenburg, S. Banisetty, S. P. H. Alinodehi, Luke Fraser, David Feil-Seifer, M. Nicolescu, M. Nicolescu
{"title":"A distributed control architecture for collaborative multi-robot task allocation","authors":"Janelle Blankenburg, S. Banisetty, S. P. H. Alinodehi, Luke Fraser, David Feil-Seifer, M. Nicolescu, M. Nicolescu","doi":"10.1109/HUMANOIDS.2017.8246931","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of task allocation for multi-robot systems that perform tasks with complex, hierarchical representations which contain different types of ordering constraints and multiple paths of execution. We propose a distributed multi-robot control architecture that addresses the above challenges and makes the following contributions: i) it allows for on-line, dynamic allocation of robots to various steps of the task, ii) it ensures that the collaborative robot system will obey all of the task constraints and iii) it allows for opportunistic, flexible task execution given different environmental conditions. This architecture uses a distributed messaging system to allow the robots to communicate. Each robot uses its own state and team member states to keep track of the progress on a given task and identify which subtasks to perform next using an activation spreading mechanism. We demonstrate the proposed architecture on a team of two humanoid robots (a PR2 and a Baxter) performing hierarchical tasks.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper addresses the problem of task allocation for multi-robot systems that perform tasks with complex, hierarchical representations which contain different types of ordering constraints and multiple paths of execution. We propose a distributed multi-robot control architecture that addresses the above challenges and makes the following contributions: i) it allows for on-line, dynamic allocation of robots to various steps of the task, ii) it ensures that the collaborative robot system will obey all of the task constraints and iii) it allows for opportunistic, flexible task execution given different environmental conditions. This architecture uses a distributed messaging system to allow the robots to communicate. Each robot uses its own state and team member states to keep track of the progress on a given task and identify which subtasks to perform next using an activation spreading mechanism. We demonstrate the proposed architecture on a team of two humanoid robots (a PR2 and a Baxter) performing hierarchical tasks.
多机器人协同任务分配的分布式控制体系结构
本文解决了多机器人系统的任务分配问题,该系统执行的任务具有复杂的分层表示,其中包含不同类型的排序约束和多条执行路径。我们提出了一种分布式多机器人控制体系结构,解决了上述挑战,并做出了以下贡献:i)它允许机器人在线,动态分配到任务的各个步骤,ii)它确保协作机器人系统将遵守所有的任务约束,iii)它允许机会主义,灵活的任务执行给定不同的环境条件。该体系结构使用分布式消息传递系统来允许机器人进行通信。每个机器人使用自己的状态和团队成员的状态来跟踪给定任务的进度,并使用激活扩散机制确定下一步要执行的子任务。我们在一个由两个人形机器人(一个PR2和一个Baxter)组成的团队中演示了所提出的架构,这些机器人执行分层任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信