Multi-objective complexity reduction for set-based fault diagnosis

A. Savchenko, Petar Andonov, Philipp Rumschinski, R. Findeisen
{"title":"Multi-objective complexity reduction for set-based fault diagnosis","authors":"A. Savchenko, Petar Andonov, Philipp Rumschinski, R. Findeisen","doi":"10.1109/ADCONIP.2017.7983846","DOIUrl":null,"url":null,"abstract":"Fault diagnosis methods ensure safe operation of industrial plants. Steadily increasing appearance of larger and interconnected systems and the necessity to take process uncertainties into account drives the need for reliable diagnosis procedures. Set-based frameworks for model-based fault diagnosis allow to handle these challenges, albeit at a high cost of computations. We propose a method to reduce the complexity of polynomial discrete-time models that retain the guarantee of fault detection. The relaxation-based method substitutes uncertain parts of model dynamics which are not relevant to diagnosing the fault. The method is illustrated with a fault detection example for an automatic air conditioning system of a building.","PeriodicalId":170851,"journal":{"name":"2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCONIP.2017.7983846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fault diagnosis methods ensure safe operation of industrial plants. Steadily increasing appearance of larger and interconnected systems and the necessity to take process uncertainties into account drives the need for reliable diagnosis procedures. Set-based frameworks for model-based fault diagnosis allow to handle these challenges, albeit at a high cost of computations. We propose a method to reduce the complexity of polynomial discrete-time models that retain the guarantee of fault detection. The relaxation-based method substitutes uncertain parts of model dynamics which are not relevant to diagnosing the fault. The method is illustrated with a fault detection example for an automatic air conditioning system of a building.
基于集的故障诊断多目标复杂性降低
故障诊断方法是工业装置安全运行的保障。越来越多的大型互联系统出现,以及考虑过程不确定性的必要性,推动了对可靠诊断程序的需求。基于模型的故障诊断的基于集合的框架可以处理这些挑战,尽管计算成本很高。我们提出了一种降低多项式离散时间模型复杂性的方法,同时保留了故障检测的保证。基于松弛的方法替代了模型动力学中与故障诊断无关的不确定部分。最后以某建筑物自动空调系统的故障检测为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信