{"title":"An Approach to Clustering of Text Documents Using Graph Mining Techniques","authors":"B. Rao, B. K. Mishra","doi":"10.4018/IJRSDA.2017010103","DOIUrl":null,"url":null,"abstract":"This paper introduces a new approach of clustering of text documents based on a set of words using graph mining techniques. The proposed approach clusters (groups) those text documents having searched successfully for the given set of words from a set of given text documents. The document-word relation can be represented as a bi-partite graph. All the clustering of text documents is represented as sub-graphs. Further, the paper proposes an algorithm for clustering of text documents for a given set of words. It is an automated system and requires minimal human interaction for the clustering of text documents. The algorithm has been implemented using C++ programming language and observed satisfactory results. KeywoRDS Bi-partite Graph Clustering, Self-loop, Sub-graph, Weighted Un-Oriented Incidence Matrix","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2017010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
This paper introduces a new approach of clustering of text documents based on a set of words using graph mining techniques. The proposed approach clusters (groups) those text documents having searched successfully for the given set of words from a set of given text documents. The document-word relation can be represented as a bi-partite graph. All the clustering of text documents is represented as sub-graphs. Further, the paper proposes an algorithm for clustering of text documents for a given set of words. It is an automated system and requires minimal human interaction for the clustering of text documents. The algorithm has been implemented using C++ programming language and observed satisfactory results. KeywoRDS Bi-partite Graph Clustering, Self-loop, Sub-graph, Weighted Un-Oriented Incidence Matrix