A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions

Ilias Diakonikolas, R. Servedio, Li-Yang Tan, Andrew Wan
{"title":"A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions","authors":"Ilias Diakonikolas, R. Servedio, Li-Yang Tan, Andrew Wan","doi":"10.4086/toc.2014.v010a002","DOIUrl":null,"url":null,"abstract":"We give a \"regularity lemma\" for degree-d polynomial threshold functions (PTFs) over the Boolean cube {−1,1}^n. Roughly speaking, this result shows that every degree-d PTF can be decomposed into a constant number of subfunctions such that almost all of the subfunctions are close to being regular PTFs. Here a \"regular\" PTF is a PTF sign(p(x)) where the influence of each variable on the polynomial p(x) is a small fraction of the total influence of p. As an application of this regularity lemma, we prove that for any constants d >= 1, eps > 0, every degree-d PTF over n variables can be approximated to accuracy eps by a constant degree PTF that has integer weights of total magnitude O(n^d). This weight bound is shown to be optimal up to logarithmic factors.","PeriodicalId":328781,"journal":{"name":"2010 IEEE 25th Annual Conference on Computational Complexity","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 25th Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/toc.2014.v010a002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

We give a "regularity lemma" for degree-d polynomial threshold functions (PTFs) over the Boolean cube {−1,1}^n. Roughly speaking, this result shows that every degree-d PTF can be decomposed into a constant number of subfunctions such that almost all of the subfunctions are close to being regular PTFs. Here a "regular" PTF is a PTF sign(p(x)) where the influence of each variable on the polynomial p(x) is a small fraction of the total influence of p. As an application of this regularity lemma, we prove that for any constants d >= 1, eps > 0, every degree-d PTF over n variables can be approximated to accuracy eps by a constant degree PTF that has integer weights of total magnitude O(n^d). This weight bound is shown to be optimal up to logarithmic factors.
低次多项式阈值函数的正则引理和低权值逼近
我们给出了布尔立方体{−1,1}^n上的d次多项式阈值函数(ptf)的“正则引理”。粗略地说,这个结果表明,每个度函数PTF都可以分解成常数个子函数,使得几乎所有的子函数都接近正则PTF。这里的“正则”PTF是一个PTF符号(p(x)),其中每个变量对多项式p(x)的影响是p总影响的一小部分。作为这个正则引理的一个应用,我们证明了对于任何常数d >= 1, eps > 0, n个变量上的每个阶d PTF都可以通过一个总权重为O(n^d)的整数阶PTF近似到精度eps。这个权值界被证明是最优的,直到对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信