Selecting Simulation Algorithm Portfolios by Genetic Algorithms

Roland Ewald, Rene Schulz, A. Uhrmacher
{"title":"Selecting Simulation Algorithm Portfolios by Genetic Algorithms","authors":"Roland Ewald, Rene Schulz, A. Uhrmacher","doi":"10.1109/PADS.2010.5471673","DOIUrl":null,"url":null,"abstract":"An algorithm portfolio is a set of algorithms that are bundled together for increased overall performance. While being mostly applied to computationally hard problems so far, we investigate portfolio selection for simulation algorithms and focus on their application to adaptive simulation replication. Since the portfolio selection problem is itself hard to solve, we introduce a genetic algorithm to select the most promising portfolios from large sets of simulation algorithms. The effectiveness of this mechanism is evaluated by data from both a realistic performance study and a dedicated test environment.","PeriodicalId":388814,"journal":{"name":"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2010.5471673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

An algorithm portfolio is a set of algorithms that are bundled together for increased overall performance. While being mostly applied to computationally hard problems so far, we investigate portfolio selection for simulation algorithms and focus on their application to adaptive simulation replication. Since the portfolio selection problem is itself hard to solve, we introduce a genetic algorithm to select the most promising portfolios from large sets of simulation algorithms. The effectiveness of this mechanism is evaluated by data from both a realistic performance study and a dedicated test environment.
基于遗传算法的仿真算法组合选择
算法组合是为了提高整体性能而捆绑在一起的一组算法。虽然到目前为止大多应用于计算困难的问题,但我们研究了模拟算法的投资组合选择,并重点研究了它们在自适应模拟复制中的应用。由于投资组合选择问题本身很难解决,我们引入了一种遗传算法来从大量的模拟算法中选择最有前途的投资组合。该机制的有效性通过来自实际性能研究和专用测试环境的数据进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信