Securing the Internet of Things using Machine Learning: A Review

S. Malik, Ruchir Chauhan
{"title":"Securing the Internet of Things using Machine Learning: A Review","authors":"S. Malik, Ruchir Chauhan","doi":"10.1109/ICCDW45521.2020.9318666","DOIUrl":null,"url":null,"abstract":"The Internet of Things facilitates integration of massive group of devices into networks to provide data for an ever-growing number of applications. The current and future IoT applications holds promise to improve the convenience and comfort for the user but are prone to various types of security threats namely Denial of Service (DoS), Man-in-the-Middle, spoofing, Jamming, Eavesdropping and software attacks. Therefore, it becomes crucial to address these security challenges. In this paper, we discuss major security threats that exist at IoT layers and review Machine Learning based IoT security systems with a focus on Supervised Learning.","PeriodicalId":282429,"journal":{"name":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDW45521.2020.9318666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Internet of Things facilitates integration of massive group of devices into networks to provide data for an ever-growing number of applications. The current and future IoT applications holds promise to improve the convenience and comfort for the user but are prone to various types of security threats namely Denial of Service (DoS), Man-in-the-Middle, spoofing, Jamming, Eavesdropping and software attacks. Therefore, it becomes crucial to address these security challenges. In this paper, we discuss major security threats that exist at IoT layers and review Machine Learning based IoT security systems with a focus on Supervised Learning.
使用机器学习保护物联网:综述
物联网有助于将大量设备集成到网络中,为越来越多的应用程序提供数据。当前和未来的物联网应用有望提高用户的便利性和舒适性,但容易受到各种类型的安全威胁,即拒绝服务(DoS)、中间人、欺骗、干扰、窃听和软件攻击。因此,解决这些安全挑战变得至关重要。在本文中,我们讨论了存在于物联网层的主要安全威胁,并回顾了基于机器学习的物联网安全系统,重点是监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信