Reducing overheads of local communications in fine-grain parallel computation

Jin-Soo Kim, S. Ha, C. Jhon
{"title":"Reducing overheads of local communications in fine-grain parallel computation","authors":"Jin-Soo Kim, S. Ha, C. Jhon","doi":"10.1109/ICPP.1997.622648","DOIUrl":null,"url":null,"abstract":"For fine-grain computation to be effective, the cost of communications between the large number of subtasks should be minimised. In this paper we present an optimization technique which reduces overheads of communications between local subtasks by bypassing the network interface and transferring data directly from memory or registers to memory. On average, the optimization results in 35.6% improvement in total execution time on instruction-level simulations with six benchmark programs from 1 to 32 nodes.","PeriodicalId":221761,"journal":{"name":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1997.622648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For fine-grain computation to be effective, the cost of communications between the large number of subtasks should be minimised. In this paper we present an optimization technique which reduces overheads of communications between local subtasks by bypassing the network interface and transferring data directly from memory or registers to memory. On average, the optimization results in 35.6% improvement in total execution time on instruction-level simulations with six benchmark programs from 1 to 32 nodes.
减少细粒度并行计算中的本地通信开销
为了使细粒度计算有效,大量子任务之间的通信成本应该最小化。在本文中,我们提出了一种优化技术,该技术通过绕过网络接口并直接将数据从存储器或寄存器传输到存储器来减少本地子任务之间的通信开销。平均而言,在使用从1到32个节点的6个基准程序进行指令级模拟时,优化使总执行时间提高了35.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信