{"title":"Generation and analysis of large reliability models (avionics)","authors":"D. Palumbo, D. Nicol","doi":"10.1109/DASC.1990.111313","DOIUrl":null,"url":null,"abstract":"An effort has been underway for several years at NASA's Langley Research Center to extend the capability of Markov modeling techniques for reliability analysis to the designers of highly reliable avionic systems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG), a software tool which uses as input a graphical, object-oriented block diagram of the system, is discussed. RMG uses an automated failure modes-effects analysis algorithm to produce the reliability model from the graphical description. Also considered is the ASSURE software tool, a parallel processing program which uses the ASSIST modeling language and SURE semi-Markov solution technique. An executable failure modes-effects analysis is used by ASSURE. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that large system architectures can now be analyzed.<<ETX>>","PeriodicalId":141205,"journal":{"name":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","volume":"5 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1990.111313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An effort has been underway for several years at NASA's Langley Research Center to extend the capability of Markov modeling techniques for reliability analysis to the designers of highly reliable avionic systems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG), a software tool which uses as input a graphical, object-oriented block diagram of the system, is discussed. RMG uses an automated failure modes-effects analysis algorithm to produce the reliability model from the graphical description. Also considered is the ASSURE software tool, a parallel processing program which uses the ASSIST modeling language and SURE semi-Markov solution technique. An executable failure modes-effects analysis is used by ASSURE. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that large system architectures can now be analyzed.<>