Job recommendation based on factorization machine and topic modelling

V. Leksin, A. Ostapets
{"title":"Job recommendation based on factorization machine and topic modelling","authors":"V. Leksin, A. Ostapets","doi":"10.1145/2987538.2987542","DOIUrl":null,"url":null,"abstract":"This paper describes our solution for the RecSys Challenge 2016. In the challenge, several datasets were provided from a social network for business XING. The goal of the competition was to use these data to predict job postings that a user will interact positively with (click, bookmark or reply). Our solution to this problem includes three different types of models: Factorization Machine, item-based collaborative filtering, and content-based topic model on tags. Thus, we combined collaborative and content-based approaches in our solution. Our best submission, which was a blend of ten models, achieved 7th place in the challenge's final leader-board with a score of 1677 898.52. The approaches presented in this paper are general and scalable. Therefore they can be applied to another problem of this type.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper describes our solution for the RecSys Challenge 2016. In the challenge, several datasets were provided from a social network for business XING. The goal of the competition was to use these data to predict job postings that a user will interact positively with (click, bookmark or reply). Our solution to this problem includes three different types of models: Factorization Machine, item-based collaborative filtering, and content-based topic model on tags. Thus, we combined collaborative and content-based approaches in our solution. Our best submission, which was a blend of ten models, achieved 7th place in the challenge's final leader-board with a score of 1677 898.52. The approaches presented in this paper are general and scalable. Therefore they can be applied to another problem of this type.
基于因子分解机和主题建模的工作推荐
本文描述了我们为2016年RecSys挑战赛提供的解决方案。在挑战中,为商业XING提供了来自社交网络的几个数据集。比赛的目标是使用这些数据来预测用户会积极互动的招聘信息(点击、收藏或回复)。我们对这个问题的解决方案包括三种不同类型的模型:Factorization Machine、基于项目的协同过滤和基于内容的标签主题模型。因此,我们在解决方案中结合了协作和基于内容的方法。我们最好的提交,是十个模型的混合,在挑战的最终排行榜上以1677 898.52的分数获得了第七名。本文提出的方法具有通用性和可扩展性。因此,它们可以应用于这类问题的另一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信