Robust Tensor Tracking With Missing Data Under Tensor-Train Format

Thanh Trung LE, K. Abed-Meraim, N. Trung, A. Hafiane
{"title":"Robust Tensor Tracking With Missing Data Under Tensor-Train Format","authors":"Thanh Trung LE, K. Abed-Meraim, N. Trung, A. Hafiane","doi":"10.23919/eusipco55093.2022.9909702","DOIUrl":null,"url":null,"abstract":"Robust tensor tracking or robust adaptive tensor decomposition of streaming tensors is crucial when observations are corrupted by sparse outliers and missing data. In this paper, we introduce a novel tensor tracking algorithm for factorizing incomplete streaming tensors with sparse outliers under tensor-train (TT) format. The proposed algorithm consists of two main stages: online outlier rejection and tracking of TT-cores. In the former stage, outliers affecting the data streams are efficiently detected by an ADMM solver. In the latter stage, we propose an effective recursive least-squares solver to incrementally update TT-cores at each time $t$. Several numerical experiments on both simulated and real data are presented to verify the effectiveness of the proposed algorithm.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Robust tensor tracking or robust adaptive tensor decomposition of streaming tensors is crucial when observations are corrupted by sparse outliers and missing data. In this paper, we introduce a novel tensor tracking algorithm for factorizing incomplete streaming tensors with sparse outliers under tensor-train (TT) format. The proposed algorithm consists of two main stages: online outlier rejection and tracking of TT-cores. In the former stage, outliers affecting the data streams are efficiently detected by an ADMM solver. In the latter stage, we propose an effective recursive least-squares solver to incrementally update TT-cores at each time $t$. Several numerical experiments on both simulated and real data are presented to verify the effectiveness of the proposed algorithm.
缺失数据下的鲁棒张量跟踪
鲁棒张量跟踪或流张量的鲁棒自适应张量分解是至关重要的,当观测被稀疏的异常值和丢失的数据破坏。本文介绍了一种新的张量跟踪算法,用于在张量序列(TT)格式下分解具有稀疏离群值的不完全流张量。该算法包括两个主要阶段:在线异常值抑制和tt核心跟踪。在前一阶段,通过ADMM求解器有效地检测影响数据流的异常值。在后一阶段,我们提出了一个有效的递归最小二乘求解器,以每次$t$增量更新tt核心。在模拟和实际数据上进行了数值实验,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信