Towards a Correlation Cooccurrence Model Generating Approach to Folksonomy

Ruliang Xiao, Youcong Ni, Xin Du, Ping Gong
{"title":"Towards a Correlation Cooccurrence Model Generating Approach to Folksonomy","authors":"Ruliang Xiao, Youcong Ni, Xin Du, Ping Gong","doi":"10.1109/WISM.2010.153","DOIUrl":null,"url":null,"abstract":"Folksonomy is a hyper graph data structure in social network, in which co occurrence is often used to act as an important means of recommender system. The co occurrence data information from folksonomy hyper graph is becoming increasingly important in recommending applications of social network. This paper presents an original method for easy random approach to generating correlation co occurrence model of folksonomy hyper graph in social network from a random user. The method creates classified co occurrence patterns, using resource items, tags, or users, correlation co occurrences obtained from two given corpora. Our experiments demonstrate that proposed approach can produces better stability for the recommender system. And our method offers a feasible means for developers to handle information co occurrence problems for folksonomy application.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Folksonomy is a hyper graph data structure in social network, in which co occurrence is often used to act as an important means of recommender system. The co occurrence data information from folksonomy hyper graph is becoming increasingly important in recommending applications of social network. This paper presents an original method for easy random approach to generating correlation co occurrence model of folksonomy hyper graph in social network from a random user. The method creates classified co occurrence patterns, using resource items, tags, or users, correlation co occurrences obtained from two given corpora. Our experiments demonstrate that proposed approach can produces better stability for the recommender system. And our method offers a feasible means for developers to handle information co occurrence problems for folksonomy application.
面向大众分类法的关联协同模型生成方法研究
大众分类法是社会网络中的一种超图数据结构,其中共现常被用作推荐系统的重要手段。来自民俗超图的共现数据信息在社交网络推荐应用中变得越来越重要。本文提出了一种简单随机的方法,从随机用户生成社会网络中民俗超图的相关共现模型。该方法使用从两个给定语料库中获得的资源项、标签或用户、相关共现创建分类共现模式。实验结果表明,该方法可以提高推荐系统的稳定性。该方法为开发人员处理民俗分类学应用中的信息共现问题提供了一种可行的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信