{"title":"Spatial Field Reconstruction of Non-Gaussian Random Fields: The Tukey G-and-H Random Process","authors":"Sai Ganesh Nagarajan, G. Peters, Ido Nevat","doi":"10.2139/ssrn.3159687","DOIUrl":null,"url":null,"abstract":"A new class of models for non-Gaussian spatial random fields is developed for spatial field reconstruction in environmental and sensory network monitoring. The developed family of models utilises a class of transformation functions known as the Tukey g-and-h transformation to create a new class of warped spatial Gaussian process model which can support various desirable features such as flexible marginal distributions, which can be skewed and/or heavy-tailed. The resulting model is widely applicable for a wide range of spatial field reconstruction applications. To utilise the model for such applications in practice, we first need to derive the statistical properties of the new family of Tukey g-and-h random fields. We are then able to derive five different objectives to perform spatial field reconstruction. These include the Minimum Mean Squared Error (MMSE), Maximum A-Posteirori (MAP) and the Spatial-Best Linear Unbiased (S-BLUE) estimators as well as the Spatial Regional and Level Exceedance estimators. Extensive simulation results and real data examples show the benefits of using the Tukey g-and-h transformation as opposed to standard Gaussian spatial random fields as is classically utilised.","PeriodicalId":198407,"journal":{"name":"IRPN: Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3159687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A new class of models for non-Gaussian spatial random fields is developed for spatial field reconstruction in environmental and sensory network monitoring. The developed family of models utilises a class of transformation functions known as the Tukey g-and-h transformation to create a new class of warped spatial Gaussian process model which can support various desirable features such as flexible marginal distributions, which can be skewed and/or heavy-tailed. The resulting model is widely applicable for a wide range of spatial field reconstruction applications. To utilise the model for such applications in practice, we first need to derive the statistical properties of the new family of Tukey g-and-h random fields. We are then able to derive five different objectives to perform spatial field reconstruction. These include the Minimum Mean Squared Error (MMSE), Maximum A-Posteirori (MAP) and the Spatial-Best Linear Unbiased (S-BLUE) estimators as well as the Spatial Regional and Level Exceedance estimators. Extensive simulation results and real data examples show the benefits of using the Tukey g-and-h transformation as opposed to standard Gaussian spatial random fields as is classically utilised.