Image-Based End-to-End Neural Network for Dense Disparity Estimation

Shuqiao Sun, Rongke Liu, Qiuchen Du, Shantong Sun, Shaoli Kang
{"title":"Image-Based End-to-End Neural Network for Dense Disparity Estimation","authors":"Shuqiao Sun, Rongke Liu, Qiuchen Du, Shantong Sun, Shaoli Kang","doi":"10.1109/VCIP47243.2019.8965761","DOIUrl":null,"url":null,"abstract":"Stereo matching is a challenging yet important task to various computer vision applications, e.g. 3D reconstruction, augmented reality, and autonomous vehicles. In this paper, we present a novel image-based convolutional neural network (CNN) for dense disparity estimation using stereo image pairs. In order to achieve precise and robust stereo matching, we introduce a feature extraction module that learns both local and global information. These features are then passed through an hour-glass structure to generate disparity maps from lower resolution to full resolution. We test the proposed method in several datasets including indoor scenes and synthetic scenes. Experimental results demonstrate that the proposed method outperforms the state-of-the-art methods in several datasets.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stereo matching is a challenging yet important task to various computer vision applications, e.g. 3D reconstruction, augmented reality, and autonomous vehicles. In this paper, we present a novel image-based convolutional neural network (CNN) for dense disparity estimation using stereo image pairs. In order to achieve precise and robust stereo matching, we introduce a feature extraction module that learns both local and global information. These features are then passed through an hour-glass structure to generate disparity maps from lower resolution to full resolution. We test the proposed method in several datasets including indoor scenes and synthetic scenes. Experimental results demonstrate that the proposed method outperforms the state-of-the-art methods in several datasets.
基于图像的端到端神经网络密集视差估计
对于各种计算机视觉应用,如3D重建、增强现实和自动驾驶汽车,立体匹配是一项具有挑战性但又重要的任务。在本文中,我们提出了一种新的基于图像的卷积神经网络(CNN),用于立体图像对的密集视差估计。为了实现精确和鲁棒的立体匹配,我们引入了一个同时学习局部和全局信息的特征提取模块。这些特征然后通过沙漏结构生成从低分辨率到全分辨率的视差图。我们在室内场景和合成场景等多个数据集上对该方法进行了测试。实验结果表明,该方法在多个数据集上优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信