Diagnostic category leakage in helper data schemes for biometric authentication

J. D. Groot, B. Škorić, N. Vreede, J. Linnartz
{"title":"Diagnostic category leakage in helper data schemes for biometric authentication","authors":"J. D. Groot, B. Škorić, N. Vreede, J. Linnartz","doi":"10.5220/0004524205060511","DOIUrl":null,"url":null,"abstract":"A helper data scheme (HDS) is a cryptographic primitive that extracts a high-entropy noise-free secret string from noisy data, such as biometrics. A well-known problem is to ensure that the storage of a user-specific helper data string in a database does not reveal any information about the secret. Although Zero Leakage Systems (ZSL) have been proposed, an attacker with a priori knowledge about the enrolled user can still exploit the helper data. In this paper we introduce diagnostic category leakage (DCL), which quantifies what an attacker can infer from helper data about, for instance, a particular medical indication of the enrolled user, her gender, etc. The DCL often is non-zero. Though small per dimension, it can be problematic in high-dimensional biometric authentication systems. Furthermore, partial a priori knowledge on of medical diagnosis of the prover can leak about the secret.","PeriodicalId":174026,"journal":{"name":"2013 International Conference on Security and Cryptography (SECRYPT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Security and Cryptography (SECRYPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004524205060511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A helper data scheme (HDS) is a cryptographic primitive that extracts a high-entropy noise-free secret string from noisy data, such as biometrics. A well-known problem is to ensure that the storage of a user-specific helper data string in a database does not reveal any information about the secret. Although Zero Leakage Systems (ZSL) have been proposed, an attacker with a priori knowledge about the enrolled user can still exploit the helper data. In this paper we introduce diagnostic category leakage (DCL), which quantifies what an attacker can infer from helper data about, for instance, a particular medical indication of the enrolled user, her gender, etc. The DCL often is non-zero. Though small per dimension, it can be problematic in high-dimensional biometric authentication systems. Furthermore, partial a priori knowledge on of medical diagnosis of the prover can leak about the secret.
生物识别认证辅助数据方案中的诊断类别泄漏
辅助数据方案(HDS)是一种加密原语,它从有噪声的数据(如生物特征)中提取高熵无噪声的秘密字符串。一个众所周知的问题是,要确保在数据库中存储特定于用户的助手数据字符串不会泄露任何有关秘密的信息。尽管已经提出了零泄漏系统(ZSL),但具有注册用户先验知识的攻击者仍然可以利用辅助数据。在本文中,我们引入了诊断类别泄漏(DCL),它量化了攻击者可以从助手数据中推断出的内容,例如,注册用户的特定医疗指示,她的性别等。DCL通常是非零的。虽然每个维度很小,但在高维生物识别身份验证系统中可能会出现问题。此外,证明人对医学诊断的部分先验知识也可能泄露秘密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信