{"title":"Text Clustering via Constrained Nonnegative Matrix Factorization","authors":"Yan Zhu, L. Jing, Jian Yu","doi":"10.1109/ICDM.2011.143","DOIUrl":null,"url":null,"abstract":"Semi-supervised nonnegative matrix factorization (NMF)receives more and more attention in text mining field. The semi-supervised NMF methods can be divided into two types, one is based on the explicit category labels, the other is based on the pair wise constraints including must-link and cannot-link. As it is hard to obtain the category labels in some tasks, the latter one is more widely used in real applications. To date, all the constrained NMF methods treat the must-link and cannot-link constraints in a same way. However, these two kinds of constraints play different roles in NMF clustering. Thus a novel constrained NMF method is proposed in this paper. In the new method, must-link constraints are used to control the distance of the data in the compressed form, and cannot-ink constraints are used to control the encoding factor. Experimental results on real-world text data sets have shown the good performance of the proposed method.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Semi-supervised nonnegative matrix factorization (NMF)receives more and more attention in text mining field. The semi-supervised NMF methods can be divided into two types, one is based on the explicit category labels, the other is based on the pair wise constraints including must-link and cannot-link. As it is hard to obtain the category labels in some tasks, the latter one is more widely used in real applications. To date, all the constrained NMF methods treat the must-link and cannot-link constraints in a same way. However, these two kinds of constraints play different roles in NMF clustering. Thus a novel constrained NMF method is proposed in this paper. In the new method, must-link constraints are used to control the distance of the data in the compressed form, and cannot-ink constraints are used to control the encoding factor. Experimental results on real-world text data sets have shown the good performance of the proposed method.