An annealing method for cellular neural networks

T. Konishi, H. Aomori, T. Otake, N. Takahashi, I. Matsuda, S. Itoh, M. Tanaka
{"title":"An annealing method for cellular neural networks","authors":"T. Konishi, H. Aomori, T. Otake, N. Takahashi, I. Matsuda, S. Itoh, M. Tanaka","doi":"10.1109/CNNA.2010.5430261","DOIUrl":null,"url":null,"abstract":"The spurious minima in optimizing operation is one of the difficulty for Lyapunov function. In this paper, novel lossless image coding method based on lifting scheme using discrete-time cellular neural networks (DT-CNNs) with annealing approach is proposed. In the proposed, the image prediction of lifting scheme is implemented by DT-CNNs solving the nonlinear optimization problem of Lyapunov energy function. Since the stability point of DT-CNNs energy function is depends to the initial state value of cells, an annealing effect of adaptive chaotic noise is used to avoid the difficulty of global asymptotical stability of DT-CNNs dynamics. The experimental results show that the proposed method produces better results than those of conventional lossless image coding methods.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spurious minima in optimizing operation is one of the difficulty for Lyapunov function. In this paper, novel lossless image coding method based on lifting scheme using discrete-time cellular neural networks (DT-CNNs) with annealing approach is proposed. In the proposed, the image prediction of lifting scheme is implemented by DT-CNNs solving the nonlinear optimization problem of Lyapunov energy function. Since the stability point of DT-CNNs energy function is depends to the initial state value of cells, an annealing effect of adaptive chaotic noise is used to avoid the difficulty of global asymptotical stability of DT-CNNs dynamics. The experimental results show that the proposed method produces better results than those of conventional lossless image coding methods.
细胞神经网络的退火方法
优化运算中的伪极小值是李亚普诺夫函数的难点之一。本文提出了一种新的基于提升方案的图像无损编码方法,该方法采用离散时间细胞神经网络(dt - cnn)和退火方法。提出了一种利用dt - cnn解决Lyapunov能量函数非线性优化问题来实现提升方案图像预测的方法。由于dt - cnn能量函数的稳定点依赖于单元格的初始状态值,采用自适应混沌噪声的退火效应,避免了dt - cnn动力学全局渐近稳定的困难。实验结果表明,该方法比传统的无损图像编码方法具有更好的编码效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信