HITSZ TMG at ICASSP 2023 SPGC Shared Task: Leveraging Pre-Training and Distillation Method for Title Generation with Limited Resource

Tianxiao Xu, Zihao Zheng, Xinshuo Hu, Zetian Sun, Yu Zhao, Baotian Hu
{"title":"HITSZ TMG at ICASSP 2023 SPGC Shared Task: Leveraging Pre-Training and Distillation Method for Title Generation with Limited Resource","authors":"Tianxiao Xu, Zihao Zheng, Xinshuo Hu, Zetian Sun, Yu Zhao, Baotian Hu","doi":"10.1109/icassp49357.2023.10097026","DOIUrl":null,"url":null,"abstract":"In this paper, we present our proposed method for the shared task of the ICASSP 2023 Signal Processing Grand Challenge (SPGC). We participate in Topic Title Generation (TTG), Track 3 of General Meeting Understanding and Generation (MUG) [1] in SPGC. The primary objective of this task is to generate a title that effectively summarizes the given topic segment. With the constraints of limited model size and external dataset availability, we propose a method as Pre-training - Distillation / Fine-tuning (PDF), which can efficiently leverage the knowledge from large model and corpus. Our method achieves first place during preliminary and final contests in ICASSP2023 MUG Challenge Track 3.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp49357.2023.10097026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present our proposed method for the shared task of the ICASSP 2023 Signal Processing Grand Challenge (SPGC). We participate in Topic Title Generation (TTG), Track 3 of General Meeting Understanding and Generation (MUG) [1] in SPGC. The primary objective of this task is to generate a title that effectively summarizes the given topic segment. With the constraints of limited model size and external dataset availability, we propose a method as Pre-training - Distillation / Fine-tuning (PDF), which can efficiently leverage the knowledge from large model and corpus. Our method achieves first place during preliminary and final contests in ICASSP2023 MUG Challenge Track 3.
在ICASSP 2023 SPGC共享任务:利用有限资源的预训练和蒸馏方法生成标题
在本文中,我们为ICASSP 2023信号处理大挑战(SPGC)的共享任务提出了我们提出的方法。我们参加了SPGC的Topic Title Generation (TTG), General Meeting Understanding and Generation (MUG) [1] Track 3。这个任务的主要目标是生成一个标题,有效地总结给定的主题段。在模型大小和外部数据可用性有限的约束下,我们提出了一种预训练-蒸馏/微调(PDF)方法,该方法可以有效地利用大型模型和语料库中的知识。我们的方法在ICASSP2023 MUG挑战赛Track 3的初赛和决赛中获得了第一名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信