Development of a Search System for Similar Images

A. Tarasov, V. Tarasova, N. N. Grinchenko, M. A. Stepanov
{"title":"Development of a Search System for Similar Images","authors":"A. Tarasov, V. Tarasova, N. N. Grinchenko, M. A. Stepanov","doi":"10.1109/ELEKTRO49696.2020.9130343","DOIUrl":null,"url":null,"abstract":"This paper discusses the search for images based on their content. Measuring visual similarity between two or more instances is a fundamental task of computer vision. For a person, evaluating the similarity of images is a natural task. However, in computer vision this is a complex problem that arises mainly due to the semantic gap. This paper discusses the use of a neural network, which allows you to get an estimate of the similarity between a pair of visual representations extracted from input data. The difference between the hashes of the two images obtained at the output of the neural network allows us to evaluate their similarity. The results of the developed algorithm and its software implementation are compared with existing solutions and show the best result on various data sets.","PeriodicalId":165069,"journal":{"name":"2020 ELEKTRO","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO49696.2020.9130343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the search for images based on their content. Measuring visual similarity between two or more instances is a fundamental task of computer vision. For a person, evaluating the similarity of images is a natural task. However, in computer vision this is a complex problem that arises mainly due to the semantic gap. This paper discusses the use of a neural network, which allows you to get an estimate of the similarity between a pair of visual representations extracted from input data. The difference between the hashes of the two images obtained at the output of the neural network allows us to evaluate their similarity. The results of the developed algorithm and its software implementation are compared with existing solutions and show the best result on various data sets.
相似图像检索系统的开发
本文讨论了基于内容的图像搜索。测量两个或多个实例之间的视觉相似性是计算机视觉的基本任务。对于一个人来说,评估图像的相似性是一项很自然的任务。然而,在计算机视觉中,这是一个复杂的问题,主要是由于语义差距引起的。本文讨论了神经网络的使用,它允许您从输入数据中提取一对视觉表示之间的相似性估计。在神经网络的输出中获得的两幅图像的哈希值之间的差异使我们能够评估它们的相似性。将所开发的算法及其软件实现结果与现有的解决方案进行了比较,并在各种数据集上显示出最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信