R. Singh, A. Brush, E. Filippov, D. Huang, Ratul Mahajan, Khurshed Mazhar, Amar Phanishayee, Arjmand Samuel
{"title":"HomeLab: a platform for conducting experiments with connected devices in the home","authors":"R. Singh, A. Brush, E. Filippov, D. Huang, Ratul Mahajan, Khurshed Mazhar, Amar Phanishayee, Arjmand Samuel","doi":"10.1145/2486001.2491701","DOIUrl":null,"url":null,"abstract":"The downward spiral in the cost of connected devices and sensors (e.g., cameras, motion sensors, remote controlled light switches) has generated a vast amount of interest towards using them in the home environments. Companies and researchers are developing technologies that employ these devices in a diverse range of ways. These include improving energy efficiency, increasing comfort and convenience through automation, implementing security and monitoring, and providing in-home healthcare. However, conducting experimental work in this domain is extremely challenging today. Evaluating the effectiveness of research prototypes typically requires some form of deployment in real homes. This task is riddled with not only social and legal constraints, but also logistical and technical hurdles. Examples include recruiting participants, hardware and software setup in the home, training participants and residents who typically possess varying levels of technical expertise, and diverse security and privacy concerns. Because of these challenges, individual research groups rarely manage to deploy their prototypes on more than a dozen or so homes concentrated in their geographic area. Such deployments tend to lack the scale and diversity that is needed to confidently answer the research hypothesis. Our goal is to lower the barrier towards deploying experimental technology in a large number of geographically distributed homes.","PeriodicalId":159374,"journal":{"name":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486001.2491701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The downward spiral in the cost of connected devices and sensors (e.g., cameras, motion sensors, remote controlled light switches) has generated a vast amount of interest towards using them in the home environments. Companies and researchers are developing technologies that employ these devices in a diverse range of ways. These include improving energy efficiency, increasing comfort and convenience through automation, implementing security and monitoring, and providing in-home healthcare. However, conducting experimental work in this domain is extremely challenging today. Evaluating the effectiveness of research prototypes typically requires some form of deployment in real homes. This task is riddled with not only social and legal constraints, but also logistical and technical hurdles. Examples include recruiting participants, hardware and software setup in the home, training participants and residents who typically possess varying levels of technical expertise, and diverse security and privacy concerns. Because of these challenges, individual research groups rarely manage to deploy their prototypes on more than a dozen or so homes concentrated in their geographic area. Such deployments tend to lack the scale and diversity that is needed to confidently answer the research hypothesis. Our goal is to lower the barrier towards deploying experimental technology in a large number of geographically distributed homes.