Continuations and monodromy on random riemann surfaces

A. Galligo, A. Poteaux
{"title":"Continuations and monodromy on random riemann surfaces","authors":"A. Galligo, A. Poteaux","doi":"10.1145/1577190.1577210","DOIUrl":null,"url":null,"abstract":"Our main motivation is to analyze and improve factorization algorithms for bivariate polynomials in <b>C</b>[<i>x,y</i>], which proceed by continuation methods.\n We consider a Riemann surface <i>X</i> defined by a polynomial <i>f(x,y)</i> of degree <i>d</i>, whose coefficients are choosen randomly. Hence we can supose that <i>X</i> is smooth, that the discriminant δ(<i>x</i>) of <i>f</i> has <i>d</i>(<i>d</i>-1) simple roots, Δ, that δ(0) ≠ 0 i.e. the corresponding fiber has <i>d</i> distinct points {<i>y</i><sub>1</sub>,...,<i>y</i><sub>d</sub>}. When we lift a loop 0 ∈ γ ⊂ <b>C</b> - Δ by a continuation method, we get <i>d</i> paths in <i>X</i> connecting {<i>y</i><sub>1</sub>,...,<i>y</i><sub>d</sub>}, hence defining a permutation of that set. This is called monodromy.\n Here we present experimentations in Maple to get statistics on the distribution of transpositions corresponding to the loops turning around each point of Δ. Multiplying families of \"consecutive\" transpositions, we construct permutations then subgroups of the symmetric group. This allows us to establish and study experimentally some conjectures on the distribution of these transpositions then on transitivity of the generated subgroups.\n These results provide interesting insights on the structure of such Riemann surfaces (or their union) and eventually can be used to develop fast algorithms.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Our main motivation is to analyze and improve factorization algorithms for bivariate polynomials in C[x,y], which proceed by continuation methods. We consider a Riemann surface X defined by a polynomial f(x,y) of degree d, whose coefficients are choosen randomly. Hence we can supose that X is smooth, that the discriminant δ(x) of f has d(d-1) simple roots, Δ, that δ(0) ≠ 0 i.e. the corresponding fiber has d distinct points {y1,...,yd}. When we lift a loop 0 ∈ γ ⊂ C - Δ by a continuation method, we get d paths in X connecting {y1,...,yd}, hence defining a permutation of that set. This is called monodromy. Here we present experimentations in Maple to get statistics on the distribution of transpositions corresponding to the loops turning around each point of Δ. Multiplying families of "consecutive" transpositions, we construct permutations then subgroups of the symmetric group. This allows us to establish and study experimentally some conjectures on the distribution of these transpositions then on transitivity of the generated subgroups. These results provide interesting insights on the structure of such Riemann surfaces (or their union) and eventually can be used to develop fast algorithms.
随机riemann曲面上的延拓与单性
我们的主要动机是分析和改进C[x,y]中二元多项式的因式分解算法,该算法采用延拓方法进行。我们考虑一个由d次多项式f(X,y)定义的黎曼曲面X,它的系数是随机选择的。因此我们可以假设X是光滑的,f的判别式δ(X)有d(d-1)个单根Δ, δ(0)≠0,即对应的纤维有d个不同点{y1,…,yd}。当我们用延拓法抬起一个循环0∈γ∧C - Δ时,我们得到X中的d条路径连接{y1,…,因此定义了该集合的一个置换。这就是所谓的单一性。在这里,我们在Maple中进行了实验,以获得Δ每个点周围的循环所对应的转置分布的统计数据。将“连续”调换族相乘,构造了对称群的置换和子群。这使得我们可以建立和实验研究一些关于这些转位分布和所生成子群的传递性的猜想。这些结果为这种黎曼曲面(或它们的并集)的结构提供了有趣的见解,并最终可用于开发快速算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信