A universal methodology for signal classification in non-Gaussian environments

N. Warke, G. Orsak
{"title":"A universal methodology for signal classification in non-Gaussian environments","authors":"N. Warke, G. Orsak","doi":"10.1109/DSP.1994.379864","DOIUrl":null,"url":null,"abstract":"The signal classification problem is posed as an M-ary hypothesis testing problem. We develop an asymptotically optimal universal classifier which does not depend on the true statistical model of the environment. We show that the relevant error probabilities decay at least exponentially in the length of the data vector. To support these results we present simulation results comparing the performance of the proposed universal detector with that of a matched filter receiver for finite test sequences.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The signal classification problem is posed as an M-ary hypothesis testing problem. We develop an asymptotically optimal universal classifier which does not depend on the true statistical model of the environment. We show that the relevant error probabilities decay at least exponentially in the length of the data vector. To support these results we present simulation results comparing the performance of the proposed universal detector with that of a matched filter receiver for finite test sequences.<>
非高斯环境下信号分类的通用方法
信号分类问题是一个多假设检验问题。我们开发了一种不依赖于真实环境统计模型的渐近最优通用分类器。我们表明,相关的误差概率在数据向量的长度上至少呈指数衰减。为了支持这些结果,我们给出了仿真结果,比较了所提出的通用检测器与匹配滤波器接收器在有限测试序列下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信