Improvement of Two-swarm Cooperative Particle Swarm Optimization Using Immune Algorithms and Swarm Clustering

Tomohiro Hayashida, I. Nishizaki, Shinya Sekizaki, Yuki Takamori
{"title":"Improvement of Two-swarm Cooperative Particle Swarm Optimization Using Immune Algorithms and Swarm Clustering","authors":"Tomohiro Hayashida, I. Nishizaki, Shinya Sekizaki, Yuki Takamori","doi":"10.1109/IWCIA47330.2019.8955042","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is useful as a method for solving optimization problems with continuous value variables because the convergence speed of solution search is fast. PSO is a evolutionary computation method in which individuals (particles) with position and velocity information are placed in the search space and acts for the purpose of finding an optimal solution with sharing information with other particles. This study constructs a particle swarm optimization method introducing the immune algorithms to improve the search capability of each particle and perform solution search more efficiently. To verify the usefulness of the proposed method, some numerical experiments are performed in this study.","PeriodicalId":139434,"journal":{"name":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA47330.2019.8955042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Particle Swarm Optimization (PSO) is useful as a method for solving optimization problems with continuous value variables because the convergence speed of solution search is fast. PSO is a evolutionary computation method in which individuals (particles) with position and velocity information are placed in the search space and acts for the purpose of finding an optimal solution with sharing information with other particles. This study constructs a particle swarm optimization method introducing the immune algorithms to improve the search capability of each particle and perform solution search more efficiently. To verify the usefulness of the proposed method, some numerical experiments are performed in this study.
基于免疫算法和群聚类的两群协同粒子群优化改进
粒子群算法具有快速收敛的特点,是求解连续值变量优化问题的一种有效方法。粒子群算法是将具有位置和速度信息的个体(粒子)置于搜索空间中,与其他粒子共享信息,以寻找最优解为目标的一种进化计算方法。本研究构建了一种引入免疫算法的粒子群优化方法,以提高每个粒子的搜索能力,提高求解效率。为了验证该方法的有效性,本文进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信