A comparison of different part-of-speech tagging technique for text in Bahasa Indonesia

Ahmad Zuli Amrullah, Rudy Hartanto, I. Mustika
{"title":"A comparison of different part-of-speech tagging technique for text in Bahasa Indonesia","authors":"Ahmad Zuli Amrullah, Rudy Hartanto, I. Mustika","doi":"10.1109/INAES.2017.8068538","DOIUrl":null,"url":null,"abstract":"Part of speech tagging has some different methods or techniques to the problem in assigning each word of a text with a part-of-speech tag. In this paper, we conducted some part-of-speech tagging techniques for Bahasa Indonesia experiments using statistical approach (Unigram, Hidden Markov Models) and Brill's tagger. In this study, we used Supervised POS Tagging approach requiring a large number of annotated training corpuses to tag properly. We used some resource annotation corpus of Bahasa. Those corpuses were implemented with POS Tagging techniques. We subsequently compared and analyzed the results. We also compared the accuracy and highlighted some advantages and disadvantages for every technique we used. Unigram showed a higher accuracy compared to HMM and Brill tagger with 88,37% on a tagged corpus.","PeriodicalId":382919,"journal":{"name":"2017 7th International Annual Engineering Seminar (InAES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Annual Engineering Seminar (InAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INAES.2017.8068538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Part of speech tagging has some different methods or techniques to the problem in assigning each word of a text with a part-of-speech tag. In this paper, we conducted some part-of-speech tagging techniques for Bahasa Indonesia experiments using statistical approach (Unigram, Hidden Markov Models) and Brill's tagger. In this study, we used Supervised POS Tagging approach requiring a large number of annotated training corpuses to tag properly. We used some resource annotation corpus of Bahasa. Those corpuses were implemented with POS Tagging techniques. We subsequently compared and analyzed the results. We also compared the accuracy and highlighted some advantages and disadvantages for every technique we used. Unigram showed a higher accuracy compared to HMM and Brill tagger with 88,37% on a tagged corpus.
印尼语文本不同词性标注技术的比较
词性标注有一些不同的方法或技术来为文本中的每个词分配词性标注。在本文中,我们使用统计方法(Unigram,隐马尔可夫模型)和Brill标注器对印尼语进行了词性标注技术实验。在本研究中,我们使用监督式词性标注方法,需要大量带注释的训练语料库来正确标注。我们使用了一些资源标注语料库。这些语料库采用词性标注技术实现。我们随后对结果进行了比较和分析。我们还比较了准确性,并强调了我们使用的每种技术的一些优点和缺点。与HMM和Brill标记器相比,Unigram在标记语料上的准确率为88.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信