Classifying WLAN Packets from the RF Envelope: Towards More Efficient Wireless Network Performance

Zerina Kapetanovic, Gregory E. Moore, S. Garman, Joshua R. Smith
{"title":"Classifying WLAN Packets from the RF Envelope: Towards More Efficient Wireless Network Performance","authors":"Zerina Kapetanovic, Gregory E. Moore, S. Garman, Joshua R. Smith","doi":"10.1145/3410338.3412337","DOIUrl":null,"url":null,"abstract":"This paper describes Packet Assay, a power efficient sparse neural network (NN) that can discriminate between wireless transmissions, such as WLAN packets, based solely on the RF signal envelope, a feature that can be measured with much less power than fully demodulating and decoding the packets. The NN was trained on a Wireless Local Area Networks (WLAN) dataset developed in-house with over 600K labeled samples and achieved above 88% accuracy while maintaining a memory footprint of only 4.9KB. This approach can reduce the power consumption of wireless modules (WM), can minimize the signal processing in IoT devices, and provides a foundation for future protocol development.","PeriodicalId":401260,"journal":{"name":"Proceedings of the 4th International Workshop on Embedded and Mobile Deep Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Workshop on Embedded and Mobile Deep Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410338.3412337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes Packet Assay, a power efficient sparse neural network (NN) that can discriminate between wireless transmissions, such as WLAN packets, based solely on the RF signal envelope, a feature that can be measured with much less power than fully demodulating and decoding the packets. The NN was trained on a Wireless Local Area Networks (WLAN) dataset developed in-house with over 600K labeled samples and achieved above 88% accuracy while maintaining a memory footprint of only 4.9KB. This approach can reduce the power consumption of wireless modules (WM), can minimize the signal processing in IoT devices, and provides a foundation for future protocol development.
从射频信封中对WLAN数据包进行分类:实现更高效的无线网络性能
本文描述了数据包分析,这是一种节能的稀疏神经网络(NN),可以区分无线传输,例如WLAN数据包,仅基于射频信号包络,这一特征可以用比完全解码器和解码数据包少得多的功率来测量。该神经网络在内部开发的无线局域网(WLAN)数据集上进行训练,其中包含超过600K的标记样本,并在保持仅4.9KB的内存占用的同时实现了88%以上的准确率。这种方法可以降低无线模块(WM)的功耗,可以最大限度地减少物联网设备中的信号处理,并为未来的协议开发提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信