Local Context Interaction-Aware Glyph-Vectors for Chinese Sequence Tagging

Junyu Lu, Pingjian Zhang
{"title":"Local Context Interaction-Aware Glyph-Vectors for Chinese Sequence Tagging","authors":"Junyu Lu, Pingjian Zhang","doi":"10.1109/icassp43922.2022.9747303","DOIUrl":null,"url":null,"abstract":"As hieroglyphics, Chinese characters contain rich semantic and glyphs information, which is beneficial to sequence tagging task. However, it’s difficult for shallow CNNs architecture to extract glyphs information from character data and implement the con-textual interaction of different glyphs information effectively. In this paper, we address these issues by presenting LCIN: a Local Context Interaction-aware Network for glyph-vectors extraction. The network utilizes depthwise separable convolution and attention machine to extract glyphs information from images of Chinese characters. Moreover, we interconnect adjacent attention blocks so that glyphs information can flow within the local context. Experiments on three subtasks for sequence tagging show that our method out-performs other glyph-based models and achieves new SOTA results in a wide range of datasets.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As hieroglyphics, Chinese characters contain rich semantic and glyphs information, which is beneficial to sequence tagging task. However, it’s difficult for shallow CNNs architecture to extract glyphs information from character data and implement the con-textual interaction of different glyphs information effectively. In this paper, we address these issues by presenting LCIN: a Local Context Interaction-aware Network for glyph-vectors extraction. The network utilizes depthwise separable convolution and attention machine to extract glyphs information from images of Chinese characters. Moreover, we interconnect adjacent attention blocks so that glyphs information can flow within the local context. Experiments on three subtasks for sequence tagging show that our method out-performs other glyph-based models and achieves new SOTA results in a wide range of datasets.
中文序列标注的局部上下文交互感知符号向量
汉字作为象形文字,包含着丰富的语义和符号信息,有利于序列标注任务的完成。然而,浅层cnn架构难以从字符数据中提取字形信息并有效实现不同字形信息的上下文交互。在本文中,我们通过提出LCIN:用于字形向量提取的本地上下文交互感知网络来解决这些问题。该网络利用深度可分卷积和注意机从汉字图像中提取字形信息。此外,我们将相邻的注意块相互连接,使字形信息可以在局部上下文中流动。在序列标注的三个子任务上的实验表明,我们的方法优于其他基于字形的模型,并在广泛的数据集上获得了新的SOTA结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信