Range Tries for scalable address lookup

I. Sourdis, G. Stefanakis, Ruben de Smet, G. Gaydadjiev
{"title":"Range Tries for scalable address lookup","authors":"I. Sourdis, G. Stefanakis, Ruben de Smet, G. Gaydadjiev","doi":"10.1145/1882486.1882520","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the Range Trie, a new multiway tree data structure for address lookup. Each Range Trie node maps to an address range [Na, Nb) and performs multiple comparisons to determine the subrange an incoming address belongs to. Range Trie improves on the existing Range Trees allowing shorter comparisons than the address width. The maximum comparison length in a Range Trie node is [log2 (Nb -- Na)] bits. Address parts can be shared among multiple concurrent comparisons or even omitted. Addresses can be properly aligned to further reduce the required address bits per comparison. In so doing, Range Tries can store in a single tree node more address bounds to be compared. Given a memory bandwidth, more comparisons are performed in a single step reducing lookup latency, memory accesses per lookup, and overall memory requirements. Latency and memory size scale better than related works as the address width and the number of stored prefixes increase. Considering memory bandwidth of 256-bits per cycle, five to seven Range Trie levels are sufficient to store half a million IPv4 or IPv6 prefixes, while memory size is comparable and in many cases better than linear search. We describe a Range Trie hardware design and evaluate our approach in terms of performance, area cost and power consumption. Range Trie 90-nm ASIC implementations, storing 0.5 million IPv4 and IPv6 prefixes, perform over 500 million lookups per second (OC-3072) and consume 3.9 and 11.4 Watts respectively.","PeriodicalId":329300,"journal":{"name":"Symposium on Architectures for Networking and Communications Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Architectures for Networking and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1882486.1882520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we introduce the Range Trie, a new multiway tree data structure for address lookup. Each Range Trie node maps to an address range [Na, Nb) and performs multiple comparisons to determine the subrange an incoming address belongs to. Range Trie improves on the existing Range Trees allowing shorter comparisons than the address width. The maximum comparison length in a Range Trie node is [log2 (Nb -- Na)] bits. Address parts can be shared among multiple concurrent comparisons or even omitted. Addresses can be properly aligned to further reduce the required address bits per comparison. In so doing, Range Tries can store in a single tree node more address bounds to be compared. Given a memory bandwidth, more comparisons are performed in a single step reducing lookup latency, memory accesses per lookup, and overall memory requirements. Latency and memory size scale better than related works as the address width and the number of stored prefixes increase. Considering memory bandwidth of 256-bits per cycle, five to seven Range Trie levels are sufficient to store half a million IPv4 or IPv6 prefixes, while memory size is comparable and in many cases better than linear search. We describe a Range Trie hardware design and evaluate our approach in terms of performance, area cost and power consumption. Range Trie 90-nm ASIC implementations, storing 0.5 million IPv4 and IPv6 prefixes, perform over 500 million lookups per second (OC-3072) and consume 3.9 and 11.4 Watts respectively.
范围尝试可扩展的地址查找
本文介绍了一种新的用于地址查找的多路树数据结构——范围树。每个Range Trie节点映射到一个地址范围[Na, Nb],并执行多次比较以确定入站地址所属的子范围。范围树改进了现有的范围树,允许比地址宽度更短的比较。Range tree节点的最大比较长度为[log2 (Nb—Na)]位。地址部分可以在多个并发比较中共享,甚至可以省略。地址可以适当对齐,以进一步减少每次比较所需的地址位。这样,Range Tries可以在单个树节点中存储更多要比较的地址边界。给定内存带宽,在单个步骤中执行更多比较,从而减少查找延迟、每次查找的内存访问以及总体内存需求。随着地址宽度和存储前缀数量的增加,延迟和内存大小的扩展优于相关工作。考虑到每周期256位的内存带宽,5到7个Range Trie级别足以存储50万个IPv4或IPv6前缀,而内存大小是相当的,在许多情况下比线性搜索更好。我们描述了一种Range Trie硬件设计,并从性能、面积成本和功耗方面评估了我们的方法。Range Trie 90纳米ASIC实现,存储50万个IPv4和IPv6前缀,每秒执行超过5亿次查找(OC-3072),分别消耗3.9和11.4瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信