Robust Training of a link adaptation cognitive engine

I. V. Haris, R. Buehrer
{"title":"Robust Training of a link adaptation cognitive engine","authors":"I. V. Haris, R. Buehrer","doi":"10.1109/MILCOM.2010.5680154","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a new perspective and insight into the process of finding the maximal performing method using a Cognitive Engine (CE) for link adaptation. It is found that near maximal performance can be reached relatively fast, even when a small number of the available communication methods provide adequate performance. The parameters that affect the expected number of trials are fully discussed along with analytical and simulation results. Finally, we provide the novel Robust Training Algorithm (RoTA), which given at least one method that exceeds the minimum performing requirements, adaptively maintains a communication link with the minimum required performance. The RoTA allows the CE to both continue learning and maintain a stable link for mission-critical applications1.","PeriodicalId":330937,"journal":{"name":"2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2010.5680154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we provide a new perspective and insight into the process of finding the maximal performing method using a Cognitive Engine (CE) for link adaptation. It is found that near maximal performance can be reached relatively fast, even when a small number of the available communication methods provide adequate performance. The parameters that affect the expected number of trials are fully discussed along with analytical and simulation results. Finally, we provide the novel Robust Training Algorithm (RoTA), which given at least one method that exceeds the minimum performing requirements, adaptively maintains a communication link with the minimum required performance. The RoTA allows the CE to both continue learning and maintain a stable link for mission-critical applications1.
链接自适应认知引擎的鲁棒训练
在本文中,我们提供了一个新的视角和见解,以寻找最大的执行方法的过程中使用认知引擎(CE)的链接适应。研究发现,即使少数可用的通信方法提供足够的性能,也可以相对较快地达到接近最大的性能。对影响试验次数的参数进行了充分的讨论,并给出了分析和仿真结果。最后,我们提供了一种新的鲁棒训练算法(RoTA),该算法给定至少一种超过最低性能要求的方法,自适应地保持具有最低性能要求的通信链路。RoTA允许CE继续学习并为关键任务应用程序保持稳定的链接1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信