{"title":"Molecular Dynamics Determination of the Lattice Thermal Conductivity of the Cubic Phase of Hafnium Dioxide","authors":"Leila Momenzadeh, I. Belova, G. Murch","doi":"10.4028/www.scientific.net/DF.27.177","DOIUrl":null,"url":null,"abstract":"The wide range of industrial applications is the main reason for an increased interest in dioxides such as HfO2. In this study, classical molecular dynamic simulations were performed to calculate the lattice thermal conductivity of the cubic phase of HfO2, over a temperature range of 100-3000 K, based on the Green-Kubo fluctuation method. In this research, the heat current autocorrelation function and lattice thermal conductivity were calculated in the a-direction. The lattice thermal conductivity of the cubic phase of HfO2 was found to be a result of three contributions. These were the optical and acoustic short-range and long-range phonon modes. Comparisons between the results of the research and experimental data when available indicate good agreement. Keywords: lattice thermal conductivity, molecular dynamics, Green-Kubo formalism, heat current autocorrelation function, hafnium dioxid","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.27.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The wide range of industrial applications is the main reason for an increased interest in dioxides such as HfO2. In this study, classical molecular dynamic simulations were performed to calculate the lattice thermal conductivity of the cubic phase of HfO2, over a temperature range of 100-3000 K, based on the Green-Kubo fluctuation method. In this research, the heat current autocorrelation function and lattice thermal conductivity were calculated in the a-direction. The lattice thermal conductivity of the cubic phase of HfO2 was found to be a result of three contributions. These were the optical and acoustic short-range and long-range phonon modes. Comparisons between the results of the research and experimental data when available indicate good agreement. Keywords: lattice thermal conductivity, molecular dynamics, Green-Kubo formalism, heat current autocorrelation function, hafnium dioxid