Data association for a hybrid metric map representation

Shugen Ma, Shuai Guo, Minghui Wang, Bin Li
{"title":"Data association for a hybrid metric map representation","authors":"Shugen Ma, Shuai Guo, Minghui Wang, Bin Li","doi":"10.1109/MFI.2012.6343056","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to solve the data association problem for a hybrid metric map representation. The hybrid metric map representation uses Voronoi diagram to partition the global map space into a series of local subregions, and then a local dense map is built in each subregion. Finally the global feature map and the local maps make up of the hybrid metric map, which can represent all the observed environment. In the proposed map representation, there exists an important property that global feature map and local maps have clear one-to-one correspondence. Benefited from this property, an identifying rule of the data association based on compatibility testing is proposed. The identifying rule can efficiently reject the wrong data association hypothesis in the application of dense environment. Two experiments validated the efficiency of data association approach and also demonstrated the feasibility of the hybrid metric map presentation.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach to solve the data association problem for a hybrid metric map representation. The hybrid metric map representation uses Voronoi diagram to partition the global map space into a series of local subregions, and then a local dense map is built in each subregion. Finally the global feature map and the local maps make up of the hybrid metric map, which can represent all the observed environment. In the proposed map representation, there exists an important property that global feature map and local maps have clear one-to-one correspondence. Benefited from this property, an identifying rule of the data association based on compatibility testing is proposed. The identifying rule can efficiently reject the wrong data association hypothesis in the application of dense environment. Two experiments validated the efficiency of data association approach and also demonstrated the feasibility of the hybrid metric map presentation.
混合度量地图表示的数据关联
提出了一种解决混合度量地图表示中数据关联问题的方法。混合度量地图表示使用Voronoi图将全局地图空间划分为一系列局部子区域,然后在每个子区域构建局部密集地图。最后由全局特征图和局部特征图组成混合度量图,可以代表所有的观测环境。在提出的地图表示中,全局特征图和局部特征图具有明确的一一对应关系。利用这一特性,提出了一种基于兼容性测试的数据关联识别规则。该识别规则可以在密集环境下有效地剔除错误的数据关联假设。两个实验验证了数据关联方法的有效性,也证明了混合度量地图表示的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信