Multi-View Spatial-Temporal Model for Travel Time Estimation

Zichuan Liu, Zhaoyang Wu, Meng Wang, Rui Zhang
{"title":"Multi-View Spatial-Temporal Model for Travel Time Estimation","authors":"Zichuan Liu, Zhaoyang Wu, Meng Wang, Rui Zhang","doi":"10.1145/3474717.3488239","DOIUrl":null,"url":null,"abstract":"Taxi arrival time prediction is essential for building intelligent transportation systems. Traditional prediction methods mainly rely on extracting features from traffic maps, which cannot model complex situations and nonlinear spatial and temporal relationships. Therefore, we propose Multi-View Spatial-Temporal Model (MVSTM) to capture the mutual dependence of spatial-temporal relations and trajectory features. Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model traffic semantics. Experiments on large-scale taxi trajectory data have shown that our approach is more effective than the existing novel methods. The source code can be found at https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3488239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Taxi arrival time prediction is essential for building intelligent transportation systems. Traditional prediction methods mainly rely on extracting features from traffic maps, which cannot model complex situations and nonlinear spatial and temporal relationships. Therefore, we propose Multi-View Spatial-Temporal Model (MVSTM) to capture the mutual dependence of spatial-temporal relations and trajectory features. Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model traffic semantics. Experiments on large-scale taxi trajectory data have shown that our approach is more effective than the existing novel methods. The source code can be found at https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.
旅行时间估计的多视点时空模型
出租车到达时间预测是智能交通系统建设的重要内容。传统的预测方法主要依赖于从交通地图中提取特征,无法对复杂情况和非线性时空关系进行建模。因此,我们提出了多视图时空模型(MVSTM)来捕捉时空关系和轨迹特征之间的相互依赖关系。具体来说,我们使用graph2vec来建模空间视图,使用双通道时间模块来建模轨迹视图,使用结构嵌入来建模交通语义。在大规模出租车轨迹数据上的实验表明,该方法比现有的新方法更有效。源代码可以在https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信