Keystroke dynamics recognition based on personal data: A comparative experimental evaluation implementing reproducible research

A. Morales, Mario Falanga, Julian Fierrez, Carlo Sansone, J. Ortega-Garcia
{"title":"Keystroke dynamics recognition based on personal data: A comparative experimental evaluation implementing reproducible research","authors":"A. Morales, Mario Falanga, Julian Fierrez, Carlo Sansone, J. Ortega-Garcia","doi":"10.1109/BTAS.2015.7358772","DOIUrl":null,"url":null,"abstract":"This work proposes a new benchmark for keystroke dynamics recognition on the basis of fully reproducible research. Instead of traditional authentication approaches based on complex passwords, we propose a novel keystroke recognition based on typing patterns from personal data. We present a new database made up with the keystroke patterns of 63 users and 7560 samples. The proposed approach eliminates the necessity to memorize complex passwords (something that we know) by replacing them by personal data (something that we are). The results encourage to further explore this new application scenario and the availability of data and source code represent a new valuable resource for the research community.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This work proposes a new benchmark for keystroke dynamics recognition on the basis of fully reproducible research. Instead of traditional authentication approaches based on complex passwords, we propose a novel keystroke recognition based on typing patterns from personal data. We present a new database made up with the keystroke patterns of 63 users and 7560 samples. The proposed approach eliminates the necessity to memorize complex passwords (something that we know) by replacing them by personal data (something that we are). The results encourage to further explore this new application scenario and the availability of data and source code represent a new valuable resource for the research community.
基于个人数据的击键动力学识别:实现可重复性研究的对比实验评价
这项工作在完全可重复研究的基础上提出了击键动力学识别的新基准。本文提出了一种基于个人数据输入模式的击键识别方法,取代了传统的基于复杂密码的身份验证方法。我们提出了一个由63个用户和7560个样本组成的新数据库。这个提议的方法通过用个人数据(我们知道的东西)代替它们,消除了记忆复杂密码(我们知道的东西)的必要性。研究结果鼓励进一步探索这种新的应用场景,数据和源代码的可用性为研究界提供了新的有价值的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信