The long-term treatment with the Ca(2+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine decreases the activity of 5-HT1 receptors in rat cerebral cortex and hippocampus.
J Popova, D Staneva-Stoytcheva, E Ivanova, T Tosheva
{"title":"The long-term treatment with the Ca(2+)-antagonists nifedipine, verapamil, flunarizine and with the calmodulin antagonist trifluoperazine decreases the activity of 5-HT1 receptors in rat cerebral cortex and hippocampus.","authors":"J Popova, D Staneva-Stoytcheva, E Ivanova, T Tosheva","doi":"10.1016/0306-3623(91)90593-u","DOIUrl":null,"url":null,"abstract":"<p><p>1. The binding activity of 5-HT1 receptors was studied in membrane fractions from the cerebral cortex and hippocampus of male Wistar rats treated orally for 13 days with the Ca(2+)-antagonists nifedipine (20 mg/kg), verapamil (50 mg/kg) and flunarizine (10 mg/kg) and with the calmodulin antagonist trifluoperazine (3 mg/kg). 2. The binding capacity and affinity of the 5-HT1 receptors in the cerebral cortex were significantly decreased after the treatment with the Ca(2+)-antagonists nifedipine, verapamil and flunarizine. The dissociation constant (Kd) was increased after the treatment with the calmodulin antagonist trifluoperazine. 3. In the hippocampus the 5-HT1 receptor affinity and number of binding sites were significantly reduced after the treatment with all four antagonists tested--nifedipine, verapamil, flunarizine and trifluoperazine, the Kd value being increased insignificantly after the flunarizine treatment. 4. The results obtained afford the suggestion that the reduction of 5-HT1 receptor activity is at least one of the results of the well known Ca(2+)-ions mediated automodulation of 5-HT release. The data confirm the view about the great importance of Ca(2+)-ions for the regulation of membrane neurotransmitter receptor activities.</p>","PeriodicalId":12487,"journal":{"name":"General pharmacology","volume":"22 6","pages":"1147-9"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0306-3623(91)90593-u","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/0306-3623(91)90593-u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
1. The binding activity of 5-HT1 receptors was studied in membrane fractions from the cerebral cortex and hippocampus of male Wistar rats treated orally for 13 days with the Ca(2+)-antagonists nifedipine (20 mg/kg), verapamil (50 mg/kg) and flunarizine (10 mg/kg) and with the calmodulin antagonist trifluoperazine (3 mg/kg). 2. The binding capacity and affinity of the 5-HT1 receptors in the cerebral cortex were significantly decreased after the treatment with the Ca(2+)-antagonists nifedipine, verapamil and flunarizine. The dissociation constant (Kd) was increased after the treatment with the calmodulin antagonist trifluoperazine. 3. In the hippocampus the 5-HT1 receptor affinity and number of binding sites were significantly reduced after the treatment with all four antagonists tested--nifedipine, verapamil, flunarizine and trifluoperazine, the Kd value being increased insignificantly after the flunarizine treatment. 4. The results obtained afford the suggestion that the reduction of 5-HT1 receptor activity is at least one of the results of the well known Ca(2+)-ions mediated automodulation of 5-HT release. The data confirm the view about the great importance of Ca(2+)-ions for the regulation of membrane neurotransmitter receptor activities.